Home
Class 12
MATHS
Integrate the functions((1+x)(x+logx)^2)...

Integrate the functions`((1+x)(x+logx)^2)/x`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{(1+x)(x+\log x)^2}{x} \, dx\), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ \int \frac{(1+x)(x+\log x)^2}{x} \, dx = \int (1+x) \left( \frac{(x+\log x)^2}{x} \right) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.4|25 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (1)/(x+x log x)

Integrate the functions ((1+log x)^(2))/(x)

Integrate the functions (x^(2)+1)log x

Integrate the functions (1)/(x(log x)^(m)),x>0

Integrate the functions x^(2)e^(x)

Integrate the functions x log2x

Integrate the functions x(log x)^(2)

Integrate the functions ((log x)^(2))/(x)

Integrate the functions x^(2)log x

Integrate the functions x sec^(2)x