Home
Class 12
MATHS
Evaluate int1^(3/2) abs(xsin(pix))dx...

Evaluate `int_1^(3/2) abs(xsin(pix))dx`

Text Solution

AI Generated Solution

To evaluate the integral \( \int_1^{\frac{3}{2}} |x \sin(\pi x)| \, dx \), we need to analyze the function \( f(x) = x \sin(\pi x) \) over the interval from 1 to \( \frac{3}{2} \). ### Step 1: Determine the Sign of \( f(x) \) First, we need to find the points where \( f(x) \) changes sign in the interval \( [1, \frac{3}{2}] \). - At \( x = 1 \): \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_1^3 x^2 dx

Evaluate: int_(-1)^(3//2)|xsinpix|dx

Evaluate int xsin^(2)x dx

Evaluate: int1/(3+sin2x)\ dx

Evaluate int_(0)^(1//2)(xsin^(-1)x)/(sqrt(1-x^(2)))dx .

(i) Show that int_(0)^(pi)xf(sinx)dx =(pi)/(2)int_(0)^(pi)f (sin x)dx. (ii) Find the value of int_(-1)^(3//2)|x sin pix|dx .

Evaluate int_(1)^(2)(3x^2+1)dx

Evaluate: int sin^(2)xsin2xdx

Evaluate: int1/(3+2x-x^2)\ dx

Evaluate int_(1)^(3)(3x^(2)+1)dx