Home
Class 12
MATHS
Integrate the functions(x-1)/(sqrt(x^2-1...

Integrate the functions`(x-1)/(sqrt(x^2-1))`

Text Solution

AI Generated Solution

To solve the integral \(\int \frac{x-1}{\sqrt{x^2-1}} \, dx\), we can break it down into two separate integrals. Here’s the step-by-step solution: ### Step 1: Split the Integral We can rewrite the integral as: \[ \int \frac{x-1}{\sqrt{x^2-1}} \, dx = \int \frac{x}{\sqrt{x^2-1}} \, dx - \int \frac{1}{\sqrt{x^2-1}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.2|39 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Integrate the functions (x+2)/(sqrt(x^(2)-1))

Integrate the functions (1)/(x-sqrt(x))

Integrate the functions (1)/(sqrt(1+4x^(2)))

Integrate the functions (1)/(sqrt(9-25x^(2)))

Integrate the functions (4x+1)/(sqrt(2x^(2)+x-3))

Integrate the functions (1)/(sqrt(x^(2)+2x+2))

Integrate the functions (1)/(sqrt((x-a)(x-b)))

Integrate the functions (1)/(sqrt((2-x)^(2)+1))

Integrate the functions (1)/(sqrt(7-6x-x^(2)))

Integrate the functions (1)/(sqrt(8+3x-x^(2)))