Home
Class 12
MATHS
Evaluate int0^pi (xsinx)/(1+cos^2x)dx...

Evaluate `int_0^pi (xsinx)/(1+cos^2x)dx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx \), we can use a symmetry property of definite integrals. ### Step-by-step Solution: 1. **Set up the integral**: \[ I = \int_0^\pi \frac{x \sin x}{1 + \cos^2 x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

Prove that int_0^a f(x)dx=int_0^af(a-x)dx , hence evaluate int_0^pi(x sin x)/(1+cos^2 x)dx

int_0^(pi/2) (sinx)/(1+Cos^2x)dx

Evaluate int_(0)^(pi)(xsinx)/((1+cos^(2)x))dx .

Evaluate (i) int_0^pi (x sin x)/(1+cos^2 x) dx Evaluate (ii) int_0^pi (4x sin x)/(1+ cos^2 x) dx

Evaluate int _(0)^(pi)(x)/(1+ cos^(2)x)dx .

Evaluate: int_0^(pi//2)(s in x)/(1+cos^2x)dx

Evaluate: int_0^pi (cos x)/(1+sinx)^2 dx

int_0^(pi/2) (dx)/(1+cos x)

Evaluate: int_0^pi x/(1+cos^2x)dx

Evaluate int_(-pi)^(pi)(xsinx)/(e^(x)+1)dx