Home
Class 12
MATHS
Evaluate int0^(pi/2)logsinxdx...

Evaluate `int_0^(pi/2)logsinxdx`

Text Solution

AI Generated Solution

To evaluate the integral \( I = \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx \), we can use a clever technique involving symmetry and properties of logarithms. Here’s a step-by-step solution: ### Step 1: Define the Integral Let \[ I = \int_0^{\frac{\pi}{2}} \log(\sin x) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT|Exercise EXERCISE 7.1|22 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.8|6 Videos
  • INTEGRALS

    NCERT|Exercise EXERCISE 7.3|24 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT|Exercise EXERCISE 9.1|12 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT|Exercise MISCELLANEOUS EXERCISE|17 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2)logsinxdx is equal to

Evaluate : int_0^(pi/2) x sinx dx

Evaluate: int_0^(pi//2)(2logsinx-logsin2x)dx

Evaluate int_0^(pi/2) (2logsinx-logsin2x)dx

Evaluate int_0^(pi/2) sin^7x dx

Evaluate: int_(0)^(pi//2)sinxdx

Evaluate: int_0^(pi/2)sin^4xdx

Evaluate: int_0^(pi//2)logtanx\ dx

Evaluate int_0^(pi/2) cos^2x dx

Evaluate int_0^(pi/2) xcosx dx