SIA PUBLICATION|Exercise EXERCISE (PROBLEMS)|45 Videos
Similar Questions
Explore conceptually related problems
Find the equation of the circle which touches x^(2) + y^(2) -4x + 6y -1 =0 at (-1,1) internally with a radius of 2.
x + y = tan^(-1)y : y^(2)y' + y^(2) + 1 = 0
If x^(2) + y^(2) = t + (1)/(t) and x^(4) + y^(4) = t^(2) + (1)/(t^(2)) then (dy)/(dx) =
If y=(x+1)(x^(2)+1)(x^(4)+1)(x^(8)+1) , then lim_(x rarr -1) (dy)/(dx)=
If y ^(2) = 4ax then 4a^2 (1+ y_(1) ^(2)) ^(3//2) + (y ^(2) + 4a ^(2)) ^(3//2)y _(2)=
Prove that the area of the triangle formed by the tangents at (x_(1),y_(1)),(x_(2)) "and" (x_(3),y_(3)) to the parabola y^(2)=4ax(agt0) is (1)/(16a)|(y_(1)-y_(2))(y_(2)-y_(3))(y_(3)-y_(1))| sq.units.