Home
Class 12
MATHS
For any integer n ge 1, underset(k=1) o...

For any integer `n ge 1, underset(k=1) overset(n) sum K ( K+2)`=

A

`(n(n+1)(n+2))/6`

B

`(n(n+1)(2n+7))/6`

C

`(n(n+1)(2n+1))/6`

D

`(n(n-1)(2n+8))/6`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • SAMPLE PAPER 2017

    SIA PUBLICATION|Exercise PHYSICS|32 Videos
  • SAMPLE PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|3 Videos
  • QUESTION PAPER

    SIA PUBLICATION|Exercise CHEMISTRY|8 Videos
  • STRAIGHT LINE

    SIA PUBLICATION|Exercise EXERCISE (PROBLEMS)|45 Videos

Similar Questions

Explore conceptually related problems

underset(n=1)overset(oo)sum(x^(n))/(n+2)=

underset(n=1)overset(oo)sum(n^(2))/((n+1)!)=

underset(n=1)overset(oo)sum(x^(n+1//2))/(n+1)=

underset(n=1)overset(oo)Sigma(1)/((2n-1)!)=

For any integer n ge 1 , then sum_(k=1)^(n) k ( k+2) is equal to

underset(n to oo)lim 1/n^(3) underset(k=1)overset(n)sum [k^(2)x]=

If S_(n) = underset (r=0) overset( n) sum (1) /(""^(n) C_(r)) and T_(n) = underset(r=0) overset(n) sum (r )/(""^(n) C_(r)) then (t_(n))/(s_(n)) =

If int_(0)^(10)f (x) dx = 5 "then" underset(k=1)overset(10)sumint_(0)^(1)f(k - 1 +x) dx =