Home
Class 12
MATHS
If x = (2at)/(1 + t^2) , y = (a(1-t^2) ...

If ` x = (2at)/(1 + t^2) , y = (a(1-t^2) )/(1 + t^2)` , where t is a parameter, then a is

A

the length of the latus rectum of a parabola

B

the radius of a circle

C

the length of the transverse axis of a hyperbola

D

the length of semi-major axis of an ellipse

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER

    SIA PUBLICATION|Exercise PHYSICS|26 Videos
  • QUESTION PAPER

    SIA PUBLICATION|Exercise CHEMISTRY|8 Videos
  • QUADRATIC EXPRESSIONS AND THEORY OF EQUATIONS

    SIA PUBLICATION|Exercise Problems|71 Videos
  • SAMPLE PAPER 2017

    SIA PUBLICATION|Exercise CHEMISTRY|3 Videos

Similar Questions

Explore conceptually related problems

Find the locus of point (at^(2),2at) where t is a parameter.

If x=(3at)/(1+t^2),y=(3at^2)/(1+t^2) then (dy)/(dx) =

Let z = 1 - t + isqrt(t^(2) + t + 2) , where t is a real parameter . The locus of z in the Argand plane is

Locus of centroid of the triangle whose vertices are (a cos t, a sin t ) , (b sin t - b cos t ) and (1, 0) where t is a parameter, is

Find the locus of point (t+(1)/(t),t-(1)/(t)) where t is a parameter.

If x = (2/ t ^(2)), y = t ^(3) -1, then (d ^(2) y)/(dx ^(2))=

The parametric equations x=(2a(1-t^(2)))/(1+t^(2)) and y=(4at)/(1+t^(2)) represents a circle whose radius is

If x = (1 + t)/(t^3) and (3 + 4t)/(2t^2) then =

If x = sqrt((1 - t^2)/(1 + t^2)), y = (sqrt(1 + t^2) - sqrt(1 - t^2))/(sqrt(1 + t^2) + sqrt(1 -t^2)) then (dy)/(dx) =

If int (log(t+sqrt(1+t^(2))))/(sqrt(1+t^(2)))dt=(1)/(2)(g(t))^(2)+C , where C is a constant, then g(2) is equal to: