Home
Class 12
MATHS
If "cosec" (alpha - beta) = 2/(sqrt3) an...

If `"cosec" (alpha - beta) = 2/(sqrt3) and "sec" (alpha + beta) = sqrt(2)`, find least positive values of `alpha and beta`.

Text Solution

Verified by Experts

The correct Answer is:
`alpha = (187 1/2)^(@) and beta = (127 1/2)^(@)`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - MULTIPLE CORRECT ANSWERS TYPE|5 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - INTEGER ANSWERS TYPE|5 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise EXERCISE - SHORT ANSWER TYPE QUESTIONS (4 marks)|23 Videos
  • TRIGONOMETRIC INVERSE CIRCULAR FUNCTIONS

    CHHAYA PUBLICATION|Exercise sample questions for competive examination|20 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If sec(alpha-beta)=sqrt(2) and sin(alpha+beta)=(1)/(2) , then find the least positive values of alpha and beta .

If tan (alpha - beta) = 1, "sec" (alpha + beta) = 2/(sqrt3) , find positive magnitude of alpha and beta .

If tan 2alpha = cot 2beta , then sec(alpha + beta) =

If sin ( alpha + beta ) =(4)/(5) and sin (alpha - beta ) =(5)/(13), find the value of tan 2 alpha

IF cos (alpha +beta )=(5)/(13) and cos (alpha - beta )=(4)/(5), then find the value of tan 2 beta .

If sin(alpha + beta) = 4/5 and sin (alpha - beta)= 5/13 , find the value of tan 2 alpha .

In sin alpha+ sin beta=(1)/(2) and cos alpha+ cos beta =(5)/(4) , find the value of tan alpha+tan beta .

If tan ( alpha-beta) = (sin 2 beta)/(5-cos 2 beta),"find the value of " tan alpha : tan beta.

If sin alpha = 1/sqrt10, cos beta = 2/sqrt5 "and" alpha, beta are positive acute angles, then find the value of (alpha + beta)

If cos (alpha -beta) =(sqrt3)/(2) and cos (alpha + beta)=1/e, then the number of ordered pairs (alpha , beta) such that alpha, betain [-pi, pi] is