Home
Class 12
MATHS
If A, B, C are three angles of /\ABC, t...

If `A, B, C` are three angles of `/_\ABC`, then
(iii) `sin (B+C) + sin(C +A) + sin (A + B)` =

A

`cos A + cos B + cos C`

B

`sin A + sin B - sin C`

C

`sin A + sin B + sin C`

D

`-(sin A + sin B + sin C)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - ASSERTION-REASON TYPE|2 Videos
  • TRIGONOMETRIC RATIOS OF ASSOCIATED ANGLES

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTIONS FOR COMPETITIVE EXAMS - MATRIX MATCH TYPE|2 Videos
  • TRIGONOMETRIC INVERSE CIRCULAR FUNCTIONS

    CHHAYA PUBLICATION|Exercise sample questions for competive examination|20 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

If A, B, C are three angles of /_\ABC , then (ii) cos (A + B) + sin C =

(iv) a sin (B-C) + b sin(C-A) + c sin (A-B)=0

If A,B,C are the angles of a triangle, show that, (i) sin B cos(C +A) + cos B sin (C +A) = 0

A, B and C are interior angles of a triangle ABC, then sin ((B + C)/(2)) =

If A,B,C are the angles of a triangle, find the maximum values of : sin A sin B sin C

If A,B,C be the angles ofa triangle then prove that (sin A + sin B)(sin B + sin C)(sinC + sinA) gt sin A sin B sinC .

If A , B and C are interior angles of triangle ABC ,then show that sin ((B+C)/( 2) )=cos (A/2)

(xiii) a^(3) sin (B-C) + b^(3) sin (C-A) + c^(3) sin(A-B)=0

If A,B,C are the angles of a triangle, find the maximum values of : sin A+ sinB+ sin C

If A,B,C are the angles of a triangle, show that, (iii) (cos A cos C + cos (A + B) cos(B + C))/(cos A sin C - sin (A + B) cos (B + C)) = cot C .