Home
Class 12
MATHS
Express u = sin^(6)x + cos^(6)x in the f...

Express `u = sin^(6)x + cos^(6)x` in the form A + B cos 4x, where A and B are constants. Find A and B. Hence, obtain the maximum and minimum values of u.

Text Solution

Verified by Experts

The correct Answer is:
`[5/8 + 3/8.(-1)]=1/4`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Multiple Choice Questions|12 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|12 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

The maximum and minimum value of cos (cos x ) are

Find the maximum and minimum value of 6sinx cosx +4cos2x

If y = cos^2(45^@+x)+(sin x - cos x)^2 , then find the maximum and minimum value of y.

Find the maximum and minimum of 3sin 2x+4 cos 2x+3

If u=sqrt(a ^(2) cos ^(2) theta+b ^(2) sin ^(2) theta)+ sqrt( a^(2) sin ^(2) theta+b ^(2) cos ^(2) theta), then the difference between the maximum and minimum values of u^(2) is-

sin3x + sinx = cos6x + cos4x

Find the minimum value of 4sin^(2)x+4cos^(2)x .

If u=sqrt(a^2 cos^2 theta + b^2sin^2theta)+sqrt(a^2 sin^2 theta + b^2 cos^2 theta), then the difference between the maximum and minimum values of u^2 is given by : (a) (a-b)^2 (b) 2sqrt(a^2+b^2) (c) (a+b)^2 (d) 2(a^2+b^2)

cos 6x = 32 cos ^(6) x - 48 cos ^(4) x + 18 cos ^(2) x-1

Prove that sin 5 x cos 2x + cos 6 x sin 3 x = sin 8x cos x