Home
Class 12
MATHS
If" " alpha " and " beta " satisfy the e...

`If" " alpha " and " beta " satisfy the equation " a cos 2 theta + b sin 2 theta = c " then show that " cos^(2) alpha + cos ^(2)beta =1 + (ac)/(a^(2) + b^(2))`

Text Solution

Verified by Experts

The correct Answer is:
`cos^(2) alpha + cos^(2) beta = 1 + (ac)/(a^(2) + b^(2))`
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Multiple Choice Questions|12 Videos
  • TRIGONOMETRIC RATIOS OF MULTIPLE ANGLES

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|12 Videos
  • TRIGONOMETRIC RATIOS OF COMPOUND ANGLES

    CHHAYA PUBLICATION|Exercise Comprehension Type|6 Videos
  • TRIGONOMETRIC RATIOS [OR FUNCTIONS] OF POSITIVE ACUTE ANGLES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type )|2 Videos

Similar Questions

Explore conceptually related problems

If alpha, beta (alpha ne beta) satisfy the equation a cos theta + b sin theta=c then the value of tan ""(alpha + beta)/(2) is-

If angles alpha and beta satisfy the equation a cos theta+ b sin theta= c(a,b,c are constants), prove that- (a) sin (alpha+ beta)= (2ab)/(a^(2)+b^(2)) (b) cos (alpha+beta)=(a^(2)-b^(2))/(a^(2)+b^(2)) (c) cos (alpha- beta)=(2c^(2)-(a^(2)+b^(2)))/(a^(2)+b^(2))

If a cos theta+b sin theta = c then show that a sin theta- b cos theta= +- sqrt(a^2+b^2-c^2)

If alpha and beta be two roots of the equation a cos theta+ b sin theta=c , show that sin alpha+ sin beta=(2bc)/(a^(2)+b^(2)) ,sin alpha sin beta =(c^(2)-a^(2))/(a^(2)+b^(2)) and tan (alpha+ beta)=(2ab)/(a^(2)-b^(2))

If a sin alpha = b sin beta " then show that ", b cot alpha + a cot beta = (a+b) "cot"(alpha+beta)/2

If cos^2theta-sin^2 theta = tan^2 alpha , then show that cos^2 alpha -sin^2 alpha = tan^2 theta .

If cos alpha+ cos beta= a and sin alpha+ sin beta =b , then show that sin 2 alpha+ sin 2 beta =2 ab(1- (2)/(a^(2)+ b^(2))) .

If alpha, beta are the solutions of the equation a tantheta+b sectheta=c then show that tan(alpha+beta)=(2ac)/(a^2-c^2 .

If cos alpha+ cos beta= a sin alpha+ sin beta=b , then show that "tan" (alpha)/(2)+"tan" (beta)/(2)= (4b)/(a^(2)+b^(2)+2a)

If a cos theta+ b sin theta= c then find the quadratic equation whose root are sin^(2) alpha and sin^(2) beta