Home
Class 12
MATHS
Simply (x^(m)/x^(n))^(m^(2)+mn+n^(2))...

Simply
`(x^(m)/x^(n))^(m^(2)+mn+n^(2))xx(x^(n)/x^(l))^(n^(2)+nl+l^(2))xx(x^(l)/x^(m))^(l^(2)+lm+m^(2))`

Text Solution

Verified by Experts

The correct Answer is:
A
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|14 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove that : ((x^m)/(x^n))^(m+n-l) xx((x^n)/(x^l))^(n+l-m)xx((x^l)/(x^m))^(l+m-n) =1 .

Prove that : ((x^m)/(x^n))^(m+n) xx((x^n)/(x^l))^(n+l)xx((x^l)/(x^m))^(l+m) =1 .

Knowledge Check

  • Statement -I : A line makes the same angle theta with each of the x and z-axis. If it makes an angle alpha with the y-axis, such that sin^(2) alpha=3 sin^(2) theta , then cos^(2) theta=3/5 . Statement -II : If a line with direction ratios, l, m, n makes angles alpha, beta, gamma respectively with x, y amd z-axis then cos alpha=(l)/sqrt(l^(2)+m^(2)+n^(2)), cos beta =(m)/sqrt(l^(2)+m^(2)+n^(2)) and cos gamma =(n)/sqrt(l^(2)+m^(2)+n^(2)) .

    A
    Satement -I is True, Statement -II is True, Statement -II is a correct explanation for Statement -I
    B
    Satement -I is True, Statement -II is True, Statement -II is not a correct explanation for Statement -I
    C
    Stament -I is True, Statement -II is False.
    D
    Statement -I is False, Statement -II is True.
  • The straight lines (x-x_(1))/(l_(1))=(y-y_(1))/(m_(1))=(z-z_(1))/(n_(1))" and "(x)/(l_(2))=(y)/(m_(2))=(z)/(n_(2)) will be perpendicular, if -

    A
    `l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=1`
    B
    `l_(1)l_(2)+m_(1)m_(2)+n_(1)n_(2)=0`
    C
    `(l_(1))/(l_(2))=(m_(1))/(m_(2))=(n_(1))/(n_(2))`
    D
    `(l_(1))/(l_(2))=(m_(1))/(m_(2))=-(n_(1))/(m_(2))`
  • Similar Questions

    Explore conceptually related problems

    Prove root(ln)((x^(l))/(x^(n)))xxroot(nm)((x^(n))/(x^(m)))xxroot(ml)((x^(m))/(x^(l)))=1

    If a^(x)=m,a^(y)=n and a^(2)=(m^(y)n^(x))^(z) show that xyz=1

    Find the value of root(ln)((x^l)/(x^n))xxroot(mn)((x^n)/(x^m))xxroot(lm)((x^m)/(x^l)) .

    If x = (n - sqrt(m^(2) -4n))/(n+sqrt(m^(2) -4n)) then find the value of (m^(2) -n^(2) -4n) (x^(2) +1) +2 (m^(2) +n^(2) -4n) x=0.

    lim_(xto0) ((2^(m)+x)^(1//m)-(2^(n)+x)^(1//n))/(x) is equal to

    If the straight line lx+my+n=0 touches the : hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 , show that a^(2) l^(2)-b^(2)m^(2)=n^(2) .