Home
Class 12
MATHS
Statement -I : underset(xrarroo)"lim"(1^...

Statement -I : `underset(xrarroo)"lim"(1^(2)/(x^(3))+(2^(2))/(x^(3))+3^(2)/(x^(3))+......+x^(2)/(x^(3)))= underset(xrarroo)"lim"(1^(2))/(x^(3))+underset(xrarroo)"lim"(2^(2))/(x^(3))+....+underset(xrarroo)"lim"(x^(2))/(x^(3))=0`
Statement - II : `underset(xrarra)"lim"{f_(1)(x)+f_(2)(x)+....+f_(n)(x)}=underset(xrarra)"lim"f_(1)(x)+underset(xrarra)"lim"f_(2)(x)+...+underset(xrarra)"lim"f_(n)(x)" `

A

Statement -I is true , Statement -II is true and Statement-II is a correct explanation for Statement - I .

B

Statement -I is true , Statement -II is true but Statement -II is is not a correct explantion of Statement -I .

C

Statement -I is true , Statement - II is false .

D

Statement - I is false , Statement -II is true .

Text Solution

Verified by Experts

The correct Answer is:
D
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Comprehension Type )|5 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination(E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Prove : underset(xrarroo)"lim"(cosx)/(x)=0

Prove : underset(xrarroo)"lim"(sinx)/(x)=0

Knowledge Check

  • underset(xrarr0)"lim"(a^(2x)-1)/(x) =

    A
    `log_(e)a`
    B
    `2log_(e)a`
    C
    `-2log_(e)a`
    D
    `-log_(e)a`
  • underset(xrarr0)"lim"(e^(3x)-1)/(x) =

    A
    `(1)/(2)`
    B
    `-(3)/(2)`
    C
    `(3)/(2)`
    D
    `-(1)/(2)`
  • underset(xrarr2)"lim"(x^(5)-32)/(x-2)= ?

    A
    10
    B
    20
    C
    40
    D
    80
  • Similar Questions

    Explore conceptually related problems

    Evaluate : underset(xrarroo)"lim"(x^(4)+3x^(3)-2x^(2)+5)/(x^(3)-3x^(2)+2x-1)

    Evaluate : underset(xrarroo)"lim"e^(1/(2x)+2)

    underset(xrarroo)(lim)(sinx/x)

    Prove that underset(xrarroo)"lim"(1)/(x)=0 .

    underset(xrarr3)"lim"(x^(3)-27)/(x^(2)-9)= ?