Home
Class 12
MATHS
Prove root(p+q)(x^(p^(2))/(x^(q^(2))))...

Prove
`root(p+q)(x^(p^(2))/(x^(q^(2))))xxroot(q+r)(x^(q^(2))/(x^(r^(2))))xxroot(r+p)(x^(r^(2))/(x^(p^(2))))=1`

Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|14 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Simply (x^(p)/x^(q))^(p+q)div((x^(p+q))/(x^(p-q)))^(p^(2)/(q))

Simply (a^(p)/a^(q))^(p+q-r).(a^(q)/a^(r ))^(q+r-p).(a^(r )/a^(p))^(r+p-q)

Prove that : ((a^q)/(a^r))^p xx((a^r)/(a^p))^qxx((a^p)/(a^q))^r =1

Consider int(x^(3)+3x^(2)+2x+1)/(sqrt(x^(2)+x+1))dx =(ax^(2)+bx+c)sqrt(x^(2)+x+1)+lambda int(dx)/(sqrt(x^(2)+x+1)) Now, match the following lists and then choose the correct code. Codes: {:(,a,b,c,d),((1),q,p,s,r),((2),s,p,q,r),((3),r,q,p,s),((4),q,s,p,r):}

Prove that the points (p,p^(2)),(q,q^(2))and(r,r^(2))(pner) can never be collinear.

If the ratio of the roots of a x ^2+2b x+c=0 is same as the ratio of roots of p x^2+2q x+r=0, then a. (2b)/(a c)=(q^2)/(p r) b. b/(a c)=(q^2)/(p r) c. (b^2)/(a c)=(q^2)/(p r) d. none of these

Prove that the points (p,p^(2)), (q,q^(2))and(r,r^(2))(pneqner) can never be collinear.

Let p and q be real numbers such that p!=0,p^3!=q ,and p^3!=-qdot If alpha and beta are nonzero complex numbers satisfying alpha+beta=-p and alpha^3+beta^3=q , then a quadratic equation having alpha//beta and beta//alpha as its roots is A. (p^3+q)x^2-(p^3+2q)x+(p^3+q)=0 B. (p^3+q)x^2-(p^3-2q)x+(p^3+q)=0 C. (p^3+q)x^2-(5p^3-2q)x+(p^3-q)=0 D. (p^3+q)x^2-(5p^3+2q)x+(p^3+q)=0

Prove that : (v) p^(log_(x)q) = q^(log_(x)p)

Let alpha,beta be the roots of the equation x^(2)-px+r=0 and alpha//2,2beta be the roots of the equation x^(2)-qx+r=0 , then the value of r is (1) (2)/(9)(p-q)(2q-p) (2) (2)/(9)(q-p)(2p-q) (3) (2)/(9)(q-2p)(2q-p) (4) (2)/(9)(2p-q)(2q-p)

CHHAYA PUBLICATION-LAWS OF INDICES-Short Answer Type Questions
  1. Simply (x^(p)/x^(q))^(p+q)div((x^(p+q))/(x^(p-q)))^(p^(2)/(q))

    Text Solution

    |

  2. Prove (1/(1+x^(b-a)+x^(c-a)))+(1/(1+x^(a-b)+x^(c-b)))+(1/(1+x^(a-c)+...

    Text Solution

    |

  3. Prove root(p+q)(x^(p^(2))/(x^(q^(2))))xxroot(q+r)(x^(q^(2))/(x^(r^(2...

    Text Solution

    |

  4. Prove root(ln)((x^(l))/(x^(n)))xxroot(nm)((x^(n))/(x^(m)))xxroot(ml)...

    Text Solution

    |

  5. If x=2^(2/3)+2^(1/3) show that x^(3)-6x=6

    Text Solution

    |

  6. If a=2^(1/3)-2^(-1/3) show that 2a^(3)+6a-3=0

    Text Solution

    |

  7. If x=2+2^(2/3)+2^(1/3) show that x^(3)-6x^(2)+6x-2=0

    Text Solution

    |

  8. If x^(1/a)=y^(1/b)=z^(1/c ) and xyz =1 show that a+b+c=0

    Text Solution

    |

  9. If a^(1/3)+b^(1/3)+c^(1/3)=0 show that (a+b+c)^(3)=27 abc

    Text Solution

    |

  10. If x^(a)=y^(b)=(xy)^(c ) prove that ab=c(a+b)

    Text Solution

    |

  11. If x^(a)=c^(b) and x^(c )=c^(a) show that a^(2)=bc

    Text Solution

    |

  12. If x^(y)=y^(x) show that (x/y)^(x/y)=x^((x)/(y)-1) if further x=2y t...

    Text Solution

    |

  13. If p^(a)=q^(b)=r^(c ) and pqr=1 show that ab+bc+ca=0

    Text Solution

    |

  14. If 2^(x)=3^(y)=12^(z) show that xy=z(x+2y)

    Text Solution

    |

  15. If (a-(1)/(a))^(2)=3 show that a^(6)+(1)/(a^(6))=110

    Text Solution

    |

  16. If x^(3)=y^(4) prove that (x/y)^(4/3)+(y/x)^(3/4)=x^(1/3)+y^(-1/4)

    Text Solution

    |

  17. If a^(x)=b,b^(y)=c,c^(z)=a show that xyz =1 (a,b,c positive num...

    Text Solution

    |

  18. If (x^(n^3))^(n)=(x^(3^n))^(3) show that root(n+1)(n^(4))=3

    Text Solution

    |

  19. If x^(p^q)=(x^sqrt(p))^(q) find p in terms of q

    Text Solution

    |

  20. If (56)^(a)=(5.6)^(b)=10^(c ) show that (1)/(a)=(1)/(b)+(1)/(c )

    Text Solution

    |