Home
Class 12
MATHS
x^(y)=y^(x),x^(2)=y^(3)...

`x^(y)=y^(x),x^(2)=y^(3)`

Text Solution

Verified by Experts

The correct Answer is:
A, B, D
Promotional Banner

Topper's Solved these Questions

  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Questions|14 Videos
  • INTRODUCTION TO THREE-DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample questions for Competitive Exams ( D Comprehension Type)|4 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

x^(y)=y^(x),x=2y

2x^(3)+x^(2)y+y^(3)

If x=2+3i and y=2-3i then find the values of (x^(3)-y^(3))/(x^(3)+y^(3))

If a/b = x/y , then show that (a+b) (a^(2)+b^(2))x^(3) = (x+y)(x^(2)+y^(2))a^(3)

If x^2=y^3 , then prove that (x/y)^(3/2)+(y/x)^-(2/3)=x^(1/2)+y^(1/3) .

Simplify : (x+y)^(4) - 4y(x+y)^(3) + 6y^(2)(x+y)^(2)-4y^(3)(x+y)+y^(4)

Verify (i) x ^(3) + y ^(3) = (x + y) (x ^(2) -xy + y ^(2)) (ii) x ^(3) -y ^(3) = (x-y) (x ^(2) +xy +y ^(2)) using some non-zone positive integers and check by actual multiplication. Can you call these as identities ?

(2x-y)^(3)-(x+y)^(3)+(2y-x)^(3)

If (x_(1),y_(1)),(x_(2),y_(2)),(x_(3),y_(3))and(x_(4),y_(4)) be the consecutive vertices of a parallelogram , show that , x_(1)+x_(3)=x_(2)+x_(4)andy_(1)+y_(3)=y_(2)+y_(4) .

If x^(y)=y^(x) show that (x/y)^(x/y)=x^((x)/(y)-1) if further x=2y then prove that y=2