Home
Class 12
MATHS
Prove that log(b)axxlog(c )bxxlog(d)c=lo...

Prove that `log_(b)axxlog_(c )bxxlog_(d)c=log_(d)a`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Multiple Choice Type Question|14 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Question|17 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

Show that log_(b)a xx log_(c )b xx log_(d)c = log_(d)a .

Prove that log_(a)bxxlog_(b)cxxlog_(c )a=1

Prove that log_(b^3)a xx log_(c^3)b xx log_(a^3)c = 1/27

Find the values : (log_(a)b)xx(log_(b)c)xx(log_(c )d)xx(log_(d)a)

If agt0,cgt0,b=sqrt(ac),a,c and ac ne 1 , N gt0 prove that (log_(a)N)/(log_(c )N)=(log_(a)N-log_(b)N)/(log_(b)N-log_(c )N)

If a > 0, c > 0, b = sqrt(ac), ac != 1 and N > 0 , then prove that (log_(a)N)/(log_(c )N) = (log_(a)N - log_(b)N)/(log_(b)N - log_(c )N) .

Prove log_(b)b = 1

If a,b,c be three such positive numbers (none of them is 1) that (log_(b)a log_(c )a-log_(a)a) + (log_(a)b log_(c )b-log_(b)b) + (log_(a)c log_(b)c-log_(c )c) = 0 , the prove that abc = 1.

Prove log_(b) 1=0

Prove log_(b)b^(x)=x