Home
Class 12
MATHS
If (logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y...

If `(logx)/(y-z)=(logy)/(z-x)=(logz)/(x-y)` show that `x^(x)y^(y)z^(z)=1`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Multiple Choice Type Question|14 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Question|17 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

If (logx)/(y-z) = (logy)/(z-x) = (logz)/(x-y) , then prove that (i) x^(x) . y^(y) . z^(z) = 1 .

If (loga)/(y+z)=(log b)/(z+x)=(log c)/(x+y) show that (b/c )^(x)(c /a)^(y)(a/b)^z=1

If (log x)/(y-z) = (log y)/(z-x) = (log z)/(x-y) , then prove that xyz = 1 .

If (x(y+z-x))/(logx)=(y(z+x-y))/(logy) =(z(x+y-z))/(logz),p rov et h a tx^y y^x=z^x y^z=x^z z^x

If (x)/(y)+(y)/(z)+(z)/(x)=0, " then find "[((x)/(y))^(3)+((y)/(z))^(3)+((z)/(x))^(3)]

Simplify: x(x-y)+y(y-z)+z(z-x)

If (x+y+z)(y+z-x)(z+x-y)(x+y-z) prop x^2y^2 then show that either x^2+y^2= z^2 or x^2+y^2-z^2 prop xy .

If a^(x)a^(y)a^(z)=1 , " then " x^(3)+y^(3)+z^(3)=?

If tan^(2)z= tan (x+y) tan (x-y) , show that cot^(2)y+ cot (z+x) cot (z-x)=0

"if " sin^(-1) x +sin ^(-1) y+sin ^(-1) z=pi show that , x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=2(x^(2)y^(2)+y^(2)z^(2)+z^(2)x^(2))