Home
Class 12
MATHS
If y=a^(1)/(1-log(a^(x)))) and z=a^(1)/(...

If `y=a^(1)/(1-log_(a^(x))))` and `z=a^(1)/(1-log_(a)y)` show that `x=a^(1)/(1-log_(a^(z)))`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Multiple Choice Type Question|14 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Question|17 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

If y = a^(1/(1-log_(a)x)) and z = a^(1/(1-log_(a)y)) , then show that x = a^(1/(1-log_(a)z))

If y=10^((1)/(1-log_(10)x)) and z=10^((1)/(1-log_(10)y)) show that x=10^((1)/(1-log_(10)z))

If y=a^(1/(1-(log)_a x)) and z=a^(1/(1-(log)_a y)) ,then prove that x=a^(1/(1-(log)_a z))

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

Draw the graph of y= x ^((1)/(log_(e)x)) .

If x = log_(a)^(bc) , y = log_(b)^(ca) and z = log_(c)^(ab) then show that frac(1)(x+1)+frac(1)(y+1)+frac(1)(z+1) = 1 , [abc ne 1]

If x = log_(2a)^(a) , y = log_(3a)^(2a) and z = log_(4a)^(3a) show that xyz = 2yz - 1.

Draw the graph of y=1/(log_(e)x)

If x=(e^(y)-e^(-y))/(e^(y)+e^(-y)) show that y=1/2log_(e )((1+x)/(1-x))