Home
Class 12
MATHS
Prove that (yz)^(log^(y)/(z))xx(zx)^(lo...

Prove that `(yz)^(log^(y)/(z))xx(zx)^(log^(z)/(x))xx(xy)^(log^(x)/(y))=1`

Promotional Banner

Topper's Solved these Questions

  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Multiple Choice Type Question|14 Videos
  • LOGARITHM

    CHHAYA PUBLICATION|Exercise Very Short Answer Type Question|17 Videos
  • LINEAR PROGRAMMING GRAPHICAL METHOD

    CHHAYA PUBLICATION|Exercise Assertion Reason Type|2 Videos
  • MAPPING OR FUNCTION

    CHHAYA PUBLICATION|Exercise Sample questions (Assertion -Reason type C)|3 Videos

Similar Questions

Explore conceptually related problems

Prove that : (iii) (yz)^(log(y/z))(zx)^(log(z/x))(xy)^(log(x/y)) = 1

Prove that (v) 1/(log_(xy)(xyz)) + 1/(log_(yz)(xyz)) + 1/(log_(zx)(xyz)) = 2

Find the value of (yz)^(log y - log z) xx (zx)^(log z - log x) xx (xy)^(log x - log y) .

Prove that log_(1/y)x xx log_(1/z)yxx log_(1/x)z=-1

If a,b,c are in A.P and x,y,z are in G.P then prove that a^((b-c)log_(a)^(x))xxb^((c-a)log_(b)^(y))xxc^((a-b)log_(c )^(z))=1

Prove that : (iv) a^(log_(a^2)x) xx b^(log_(b^2)y) xx c^(log_(c^2)z) = sqrt(xyz)

Show that a^(log_(a^2)^(x))xxb^(log_(b^2)^(y))xxc^(log_(c^2)^(z))=sqrt(xyz)

Prove that x^(log y - logz) xx y^(log z - logx) xx z^(log x - log y) = 1 .

If y=x^(y^(x)) , prove that, (dy)/(dx)=(y log y(1+x logx log y))/(x logx(1-x logy)) .