Home
Class 12
MATHS
Find the length of latus rectum and the ...

Find the length of latus rectum and the coordinates of the foci of the ellipse `25x^(2) + 4y^(2) = 100` .

Text Solution

Verified by Experts

The correct Answer is:
`(8)/(5)` unit and `(0, pm sqrt(21))`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • ELLIPSE

    CHHAYA PUBLICATION|Exercise Short Answer Type Questios|48 Videos
  • ELLIPSE

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams ( A M . C . Q )|5 Videos
  • ELLIPSE

    CHHAYA PUBLICATION|Exercise M . C . Q|20 Videos
  • DIRECTION COSINES AND DIRECTION RATIOS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type|2 Videos
  • GENERAL SOLUTIONS OF TRIGNOMETRIC EQUATIONS

    CHHAYA PUBLICATION|Exercise Assertion-Reason Type-|2 Videos

Similar Questions

Explore conceptually related problems

Find the latus rectum , eccentricity and the coordinates of the foci of the ellipse 9x^(2) + 5y^(2) + 30 y = 0

Find the coordinates of foci of the ellipse 5 x^(2) + 9y ^(2) - 10x + 90 y + 185 = 0

Knowledge Check

  • The coordinates of the foci of the ellipse 20x^2+4y^2=5 are

    A
    `(0,+-1)`
    B
    `(0,+-sqrt2)`
    C
    `(+-1,0)`
    D
    `(+-sqrt2,0)`
  • The eccentricity of the ellipse 25 x^(2) + 4y^(2) = 100 is _

    A
    `(7sqrt(7))/(5)`
    B
    `(3sqrt(7))/(5)`
    C
    `(7sqrt(3))/(5)`
    D
    `(sqrt(21))/(5)`
  • The length of latus rectum of the ellipse 25x^(2) + 9y ^(2) = 225 is _

    A
    `(16)/(5)` unit
    B
    `(18)/(5)` unit
    C
    `(8)/(5)` unit
    D
    `(9)/(5)` unit
  • Similar Questions

    Explore conceptually related problems

    Find the length of latus rectum and the equations of the directrices of the hyperbola 3y^(2) - 4x^(2) = 12

    Find the length of the latus rectum, eccentricity, coordinates of centre and foci of the ellipse 3x^2+4y^2+6x-8y-5=0 .

    Find the eccentricity, the length of latus rectum and the centre of ellipse 9x^(2) + 16y^(2) - 54 x + 64 y + 1 = 0

    The length of the latus rectum of the ellipse 16x^(2) + 25y^(2) = 400 is:

    The length of latus rectum of the ellipse 9x^(2) + 25y^(2) = 225 is _