Home
Class 12
MATHS
underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)=?...

`underset(xrarr1)"lim"(x-1)/(sqrt(x)-1)=`?

A

2

B

1

C

0

D

3

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • LIMIT

    CHHAYA PUBLICATION|Exercise EXERCISE 2 (Very Short Answer Type Questions )|56 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise EXERCISE 2 ( Short Answer Type Questions)|80 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise IIIustrative Examples|53 Videos
  • LAWS OF INDICES

    CHHAYA PUBLICATION|Exercise Long Answer Type Questions|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination(E. Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following limits : underset(xrarr1)"lim"(x^(2)-1)/(sqrt(3x+1)-sqrt(5x-1))

Evaluate the following limits : underset(xrarr3)"lim"(x-3)/(sqrt(x-2)-sqrt(4-x)

If G(x)=.-sqrt(25-x^(2)),"find the value of " underset(xrarr1)"lim"(G(x)-G(1))/(x-1)

Evaluate the following limits : underset(xrarr1)"lim"(x^(3)-1)/(x^(2)-1)

If K^(2)=underset(xrarr0)"lim"((x)/(sqrt(1+x)-sqrt(1-x))) , then the value of K will be -

underset(xrarr0)"lim"(sinx)/(sqrt(x)) is -

underset(xrarr0)"lim"(a^(2x)-1)/(x) =

underset(xrarr0)"lim"(e^(3x)-1)/(x) =

underset(xrarr4)"lim"(sqrt(x)-2)/(x-4)= ?

Prove : underset(xrarr1)"lim"(x^(2)-sqrt(x))/(sqrt(x)-1)=3