Home
Class 12
MATHS
Show that A=(1)/(3)[{:(-1,2,-2),(-2,1,2)...

Show that `A=(1)/(3)[{:(-1,2,-2),(-2,1,2),(2,2,1):}]` is proper orthogonal matrix.

Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -3|21 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -4|8 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-4|4 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos

Similar Questions

Explore conceptually related problems

Show that , A^(-1) = (1)/(3) [(-1,2,-2),(-2,1,-2),(2,2,1)] is a proper orthogonal matrix.

Show that , A = (1)/(sqrt2)[(1,1),(-1,1)] is a proper orthogonal matrix. Hence find A^(-1)

Show that the matrix A = (1)/(3)[(1,2,2),(2,1,-2),(-2,2,-1)] is orthogonal, Hence, find A^(-1) .

If A=(1)/(3){:[(-1,2,-2),(-2,1,2),(2,2,1)] show that "AA"^(T)=I .

Show that, A = 1/3[[1,2,2],[2,1,-2],[-2,2,-1]] are orthogonal matrix and hence find A^(-1) .

If A=1/3({:(-1,2,-2),(-2,1,2),(2,2,1):}) , show that "AA"^(T)=I_(3) .

Show that, the matrix A = [(1,2,2),(2,1,2),(2,2,1)] satisfies the equation A^(2) - 4A - 5I_(3) = 0 and hence find A^(-1) .

If A=1/3|[1, 2, 2], [2, 1,-2],[a,2,b]| is an orthogonal matrix, then a=-2 b. a=2,b=1 c. b=-1 d. b=1

Show that A = [[1,2,2],[2,1,2],[2,2,1]] satrisfies the matrix equation A^2-4A-5I_3 =0

[(7,1,2),(9,2,1)]xx[(3),(4),(5)]+2[(4),(2)] is equal to the matrix-