Home
Class 12
MATHS
If A=({:(2,-1),(1,3):}), then show that...

If `A=({:(2,-1),(1,3):})`, then show that `A^2-5A+7I_2=0`: hence find `A^(-1)`.

Text Solution

Verified by Experts

The correct Answer is:
`[(1)/(7)({:(3,1),(-1,2):})]`
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -3|21 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT -4|8 Videos
  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-4|4 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos

Similar Questions

Explore conceptually related problems

If A= {:[( 3,1),( -1,2) ]:} Show that A^(2) -5A +7I =O.Hence find A^(-1)

If A=[(3,1),(-1,2)] , show that A^(2)-5A+7I=0 .

Show that the matrix A=({:(2,-3),(3,4):}) satisfies the equation A^(2)-6A+17I=O and hence find A^(-1) where I is the identity matrix and O is the null matrix of order 2 times 2 .

If A=({:(1,4),(2,3):}) , then show that A^(2)-4A-5I=0 ,where I=({:(1,0),(0,1):}) " and " O=({:(0,0),(0,0):}) .

If A = ((3,1),(-1,2)), I = ((1,0),(0,1)) and O = ((0,0),(0,0)) show that, A^(2) - 5A + 7I = O . Hence find A^(-1) .

If A = ([1,4],[2,3]) then show that A^2-4A-5I = theta and using this find A^(-1) . Where I= ([1,0],[0,1]) and theta = ([0,0],[0,0]) .

A = [[3,-5],[-4,2]] , verify that A^2 -5A-14I=0, hence find A^(-1)

If A=[(1,2,3),(3,-2,1),(4,2,1)] , then show that A^(3)-23A-40I=0

A={:[( 1,1,1),(1,2,-3),(2,-1,3)]:} Show that A^(3) - 6A^(2) +5A +11 I =O. Hence , find A^(-1)

If A = [[3,1],[-1,2]],I= [[1,0],[0,1]] and O = [[0,0],[0,0]] show that A^2-5A+7I=0 . Hence find A^(-1) .