Home
Class 12
MATHS
For many vector vecx, the value of (vecx...

For many vector `vecx`, the value of `(vecx xxhati)^2+(vecx xxhatj)^2+(vecx xxhatk)^2` is equal to

A

`|vecx|^2`

B

`2|vecx|^2`

C

`3|vecx|^2`

D

`4|vecx|^2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • QUESTION PAPER 2017

    CHHAYA PUBLICATION|Exercise UNIT-3|30 Videos
  • QUESTION PAPER -2018

    CHHAYA PUBLICATION|Exercise WBJEE|45 Videos
  • QUESTIONS PAPER -2019

    CHHAYA PUBLICATION|Exercise WBJEE 2019|45 Videos

Similar Questions

Explore conceptually related problems

If u and v are two non-collinear unit vectors such that |vecu × vecv| = ∣ ​ (vecu − vecv) /2 ​ ∣ ​ , then the value of ∣ vecu ×( vecu × vecv) ∣ ^2 is equal to

The value of the integral int_-2^2 (1 + 2 sin x) e^absx dx is equal to

The value of int_(0)^((pi)/(2)) (2^(sinx)dx)/(2^(sinx)+2^(cosx)) is equal to -

The value of 1/2{sec^2(tan^-1 2)+cosec^2(cot^-1 3)+tan^2(pi/3)} is equal to

Find |vecx| if for a unit vector, veca , (vecx-veca).(vecx+veca) =12,

The value of int_(0)^(pi) (x)/(a^(2)cos^(2)x+b^(2)sin^(2)x)dx is equal to -

The value of the integral int_(-2)^(2)(1+2 sinx)e^(|x|)dx is equal to

The value of int (x dx)/(x^(2)+4x+5) is equal to -

vecp, vecq and vecr are three mutually prependicular vectors of the same magnitude . If vector vecx satisfies the equation vecp xx((vecx-vecq) xxvecp)+ vecq xx ((vecx -vecr)xxvecq)+vecrxx((vecx-vecp)xxvecr)=vec0 " then " vecx is given by

If vec x and vecy are unit vectors and |vecz| = 2/sqrt7 such that vecz + (vecz xx vecx) = vecy then find the angle theta between vecx and vecz