Home
Class 12
MATHS
If x=Ae^(-(kt)/2)cos(pt+in), and A,k,p,i...

If `x=Ae^(-(kt)/2)cos(pt+in)`, and A,k,p,`in` are constants, show that `(d^2x)/(dt^2)+kdx/dt+n^2x=0`, where `n^2=p^2+1/4k^2`.

Promotional Banner

Topper's Solved these Questions

  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Multiple correct answer type)|5 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Sample Question for Competitive Examination (Integer answer type)|5 Videos
  • SECOND ORDER DERIVATIVE

    CHHAYA PUBLICATION|Exercise Short Answer type Question|50 Videos
  • REVISION OF PREVIOUS TWO DIMENSIONAL COORDINATE GEOMETRY

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams E (Assertion - Reason Type )|2 Videos
  • SEQUENCE AND SERIES

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion-Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

If y=Acosnt+Bsin nt(A,B,n are constants), show that (d^2x)/(dx^2)+n^2x=0 .

IF x=(a+bt)e^(-nt) , show that , (d^2x)/(dt^2)+2ndx/dt+n^2x=0 .

If x=sint,y=sinkt(k ne0 , constant) then show that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+k^2y=0 .

Show that , the solution x = A cos (nt + B) + (k)/(n^(2) - p^(2)) . Sin pt , for all A and B satisfies the differential equation (d^(2) x)/(dt^(2)) + n^(2)x = k sin pt .

Show that , the solution x = e^(-kt) (a cos nt + b sin nt ), for all a and b , always satisfies the differenital equation (d^(2)x)/(dt^(2)) + 2k (dx)/(dt) + (k^(2) + n^(2)) x = 0

If x^2+p x+q=0a n dx^2+q x+p=0,(p!=q) have a common roots, show that 1+p+q=0 .

If f(x)= 1/x^2 ,show that f(x)-f(x+1)=(2x+1)/(x^2(x+1)^2) and hence again show that 3/(1^2. 2^2)+5/(2^2 .3^2)+7/(3^2 .4^2)+...+(2n+1)/(n^2(n+1)^2)=(n^2+2n)/((n+1)^2)

Prove that int_0^x e^(x t-t^2) dt=e^(x^(2)/4)int_0^x e^-(t^(2)/4)dt

Given (sin2kx)/(sin x)=2[cos x+cos 3x+…+ cos(2k-1)x] , where k is a positive integer, show that, int_(0)^((pi)/(2))sin2 kx cotx dx=(pi)/(2) .

Prove that , x = A cos sqrt(mu t) is a solution of the differential equation (d^(2)x)/(dt^(2)) + mu x = 0

CHHAYA PUBLICATION-SECOND ORDER DERIVATIVE-Long answer type Question
  1. IF y=(cos^-1x)^2, prove that,(1-x^2)(d^2y)/(dx^2)-xdy/dx-2=0. Hence,...

    Text Solution

    |

  2. If y=e^x, Prove that , xy2-(2x-1)y1+(x-1)y=0.

    Text Solution

    |

  3. In the parabola y^2=4ax, prove that (d^2y)/(dx^2).(d^2x)/(dy^2)=(-2a)/...

    Text Solution

    |

  4. If x=cos t and y=log t , prove that at t=pi/2, (d^2y)/(dx^2)+(dy/dx)^2...

    Text Solution

    |

  5. IF x=t^2+2t,y=t^3-3t, where t is a parameter then show that, (d^2y)/(d...

    Text Solution

    |

  6. If y=ae^(tsqrt2)+be^(-tsqrt2) and x= sin t, show that, (1-x^2)(d^2y)...

    Text Solution

    |

  7. Evaluate int sin3x sin5xdx.

    Text Solution

    |

  8. If x=1/z and y=f(x), then prove that, (d^2f)/(dx^2)=2z^3dy/dz+z^4(d^...

    Text Solution

    |

  9. Putting logx=z show that, x^2(d^2y)/(dx^2)=(d^2y)/(dz^2)-dy/dz.

    Text Solution

    |

  10. If x=Ae^(-(kt)/2)cos(pt+in), and A,k,p,in are constants, show that (d^...

    Text Solution

    |

  11. IF y^4+5xy+y=2, find dy/dxand(d^2y)/(dx^2), when x=0,y=1.

    Text Solution

    |

  12. If F(x) =f(x)phi(x) and f'(x)phi'(x)=a (a constant), then prove that ,...

    Text Solution

    |

  13. IF y=e^(ax)sin bx, then prove that, (d^2y)/(dx^2)-2ady/dx+(a^2+b^2)...

    Text Solution

    |

  14. If y=cosecx+cotx, then show that,(d^2y)/(dx^2)=sinx/(1-cosx)^2.

    Text Solution

    |

  15. IF y^2=ax^2+2bx+c, Prove that (d^2x)/(dy^2)=(b^2-ac)/(ax+b)^3.

    Text Solution

    |

  16. IF y=Ae^(mx)+Be^(nx), show that y2-(m+n)y1+mny=0.

    Text Solution

    |

  17. IF xsqrt(1+y)+ysqrt(1+x)=0, show that, dy/dx=-1/(1+x)^2

    Text Solution

    |

  18. IF xsqrt(1+y)+ysqrt(1+x)=0, show that, (d^2y)/(dx^2)=2/(1+x)^3.

    Text Solution

    |

  19. IF y=e^(msin^-1x), find the value of (y2)0.

    Text Solution

    |

  20. IF y=sqrt(sin x+sqrt(sin x +sqrt(sin x +.... oo), show that (2y-1)^3...

    Text Solution

    |