Home
Class 12
MATHS
Solve : cos^(2) x dy/dx - tan2 x cdot y...

Solve : ` cos^(2) x dy/dx - tan2 x cdot y = cos^(4)x, ` given `y=(3sqrt(3))/8` when`x = pi/6`

Text Solution

Verified by Experts

The correct Answer is:
`(1-tan ^(2) x) y= 1/2 sin2x. `
Promotional Banner

Topper's Solved these Questions

  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise MULTIPLE CHOICE TYPE QUSETIONS|6 Videos
  • LINEAR DIFFERENTIAL EQUATION

    CHHAYA PUBLICATION|Exercise Short Answer Type Questions|37 Videos
  • LIMIT

    CHHAYA PUBLICATION|Exercise Sample Questions for Competitive Exams (Assertion -Reason Type)|2 Videos
  • LINEAR INEQUATIONS

    CHHAYA PUBLICATION|Exercise SAMPLE QUESTION FOR COMPETITIVE EXAMS (Assertion- Reason Type)|2 Videos

Similar Questions

Explore conceptually related problems

Solve x cos x dy/dx + y (sin x + cos x) = 1

Solve: cos^(-1)((dy)/(dx)) = x+y .

Solve : x cos x(dy)/(dx)+y(x sin x+cos x)=1

Solve: cos^2x (dy)/(dx) + y= tanx(0 le x le pi/2) .

Solve : (2x - 10y^(3)) dy/dx + y=0

Solve: (1+x^2)(dy)/(dx) = y+tan^(-1)x

Solution of the equation cos^2x(dy)/(dx)-(tan2x)y=cos^4x , where |x|< pi/4 and y(pi/6)=(3sqrt(3))/8 is

cos^(2)x(dy)/(dx) + y = tan x (o le x le (pi)/(2))

dy/dx + 2y tan x = sinx, give y = 0 when x= pi/3

Solve : (x+ tan y) dy = sin 2 y dx