Home
Class 11
PHYSICS
If vecX = vecA xx(vecB xxvecC), then vec...

If `vecX = vecA xx(vecB xxvecC)`, then `vecX` can be expressed as :

A

linear combination of `vecA ` and `vecB`

B

linear combinations of `vecB` and `vecC`

C

linear combation of `vecA` and `vecB`

D

`vecB( vecA. vecC) - vecC(vecB . vecA)`

Text Solution

Verified by Experts

The correct Answer is:
B, D

`X = vecA xx (vecB xx vecC)`
` = vecB(vecA. vecC)-vecC(vecB. vecA)`
Hence, `vecX` is a linear combination of vectros `vecB` and `vecC`.
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    GRB PUBLICATION|Exercise ASSERTION- REASON|1 Videos
  • VECTORS

    GRB PUBLICATION|Exercise MATRIX- MATCH|4 Videos
  • VECTORS

    GRB PUBLICATION|Exercise OBJECTIVE QUESTIONS|120 Videos
  • UNITS AND DIMENSIONS

    GRB PUBLICATION|Exercise Link Compression|6 Videos

Similar Questions

Explore conceptually related problems

vecA and vecB are two vectors. (vecA + vecB) xx (vecA - vecB) can be expressed as :

If (veca xx vecb) xx vecc = veca xx (vecb xx vecc) where veca, vecb and vecc are any three vectors such that veca.vecb =0, vecb.vecc=0 then veca and vecc are:

If vecA + vecB +vecC = 0 , then vecA xx vecB is

If veca xx (vecbxx vecc)= (veca xx vecb)xxvecc then

If |veca.vecb|= |veca xx vecb| , then the angle between veca and vecb is

If (vecaxxvecb)xxvecc=vecaxx(vecbxxvecc) where veca, vecb and vecc are any three vectors such that veca.vecb!=0, vecb. vecc!=0 then veca and vecc are

If |vecA xx vecB| = |vecA*vecB| , then the angle between vecA and vecB will be :

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

Vectors vecA and vecB satisfying the vector equation vecA+ vecB = veca, vecA xx vecB =vecb and vecA.veca=1 . Vectors and vecb are given vectosrs, are

If vecA.vecB = |vecA xx vecB| , find angle between vecA and vecB .