Home
Class 11
PHYSICS
If ABC is a right angled triangle wit...

If ABC is a right angled triangle with hypotenuse AB=P. Then `vecAB. vecAC+ vecBC. vecBA + vecCA. vecCB= mp^(2)`. Find m.

Text Solution

Verified by Experts

The correct Answer is:
1

`vecAB. vecAC + vecBC. vecBA + vecCA . vecCB = mp^(2)`
`p cos theta x" "(p sin theta)y" "theta= 90^(@)`
`" "p cos theta x + p sin theta y + -0 mp^(2)`
`p cos theta. pcos theta + p sin theta - p sin theta = mp^(2)`

`p^(2) ( cos^(2) theta + sin^(2) theta) = mp^(2)`
`" "m= 1`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -1|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -2|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise MATRIX- MATCH|4 Videos
  • UNITS AND DIMENSIONS

    GRB PUBLICATION|Exercise Link Compression|6 Videos

Similar Questions

Explore conceptually related problems

In a right angled triangle ABC, the hypotenuse AB =p, then vec(AB).vec(AC) + vec(BC).vec(BA)+vec(CA).vec(CB) is equal to:

In a right angled triangle hypotenuse AC= p, then vec(AB). vec(AC ) + vec(BC) .vec(BA) + vec(CA). vec(CB) equal to ?

In a right angled triangle ABC.the hypotenuse AB=p,then AB.AC+BC.BA+CA.CB

If in a right-angled triangle ABC, the hypotenuse AB=p, then vec AB.AC+vec BC*vec BA+vec CA.vec CB is equal to 2p^(2) b.(p^(2))/(2) c.p^(2) d.none of these

If in a right-angled triangle ABC, hypotenuse AC=p, then what is vec(AB).vec(AC)+vec(BC).vec(BA)+vec(CA).vec(CB) equal to ?

If ABC is a right-angled triangle with AC as its hypotenuse, then which one of the following is correct ?

A side of an isosceles right angled triangle is x. Find its hypotenuse.

ABC is a right angled triangle in which /_A=90^(@) and AB=AC. Find /_B and /_C .

1.In a right angled triangle ABC,AB=AC Thena:b: c is