Home
Class 11
PHYSICS
Given vecr = A cos alphat hati + B sin ...

Given `vecr = A cos alphat hati + B sin alphat hatj`. Then if `(d^(2) vecr)/(dt^(2))= - alpha^(n) vecr` find the value of n.

Text Solution

Verified by Experts

The correct Answer is:
2

`vecr= A sin alpha t hati + B sin alpha t hatj`
`(dr)/(dt) = - A alpha sin alpha t hati - B alpha sin alpha t hatj`
`(d^(2) vecr)/(dt^(2)) = - A alpha^(2) cos alpha t hati - B alpha^(2) sin alphat hatj`
`=- alpha^(2) [A cos alpha t hat i + B sin alpha t hatj]`
`=- alpha^(2) vecr`
`therefore n=2`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -1|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -2|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise MATRIX- MATCH|4 Videos
  • UNITS AND DIMENSIONS

    GRB PUBLICATION|Exercise Link Compression|6 Videos

Similar Questions

Explore conceptually related problems

The vectors vecA=sin(alphat) hati-cos(alphat) hatj and vecB=cos(alphat^2/4) hati +sin(alphat^2/4) hatj are orthogonal to each other the value of t would be(where alpha is a positive constant)

Let veca=-hati-hatk,vecb =-hati + hatj and vecc = i + 2hatj + 3hatk be three given vectors. If vecr is a vector such that vecr xx vecb = vecc xx vecd and vecr.veca =0 then find the value of vecr .vecb .

Let veca=2hati+3hatj+4hatk, vecb=hati-2hatj+jhatk and vecc=hati+hatj-hatk. If vecr xx veca =vecb and vecr.vec c=3, then the value of |vecr| is equal to

If the line vecr = (2hati+ hatj - hatk) + lambda(hati+mhatj-2hatk) is parallel to the plane vecr.(2hati+hatj+mhatk) = 1 then find the value of m.

Show that the lines vecr= hati+hatj-hatk+lambda(3hati-hatj) and vecr = 4 hati+hatk+mu(2hati+3hatk) intersect. Also find the co[-ordinates of their point of intersection.

Let veca=(cos theta)hati-(sin theta)hatj, vecb=(sin theta)hati+(cos theta)hatj,vecc=hatk and vecr=7hati+hatj+10hatk . IF vecr=x veca+y vecb+z vecc , then the value of (x^(2)+y^(2))/(z) is equal to

If the point of intersection of the line vecr = (hati + 2 hatj + 3 hatk ) + ( 2 hati + hatj+ 2hatk ) and the plane vecr (2 hati - 6 hatj + 3 hatk) + 5=0 lies on the plane vec r ( hati + 75 hatj + 60 hatk) -alpha =0, then 19 alpha + 17 is equal to :