Home
Class 11
PHYSICS
|vecA + vecB|^(2) - |vecA - vecB|^(2) = ...

`|vecA + vecB|^(2) - |vecA - vecB|^(2) = n vecA. vecB`
The value of n is :

Text Solution

Verified by Experts

The correct Answer is:
4

`|vecA + vecB |^(2) - |vecA- vecB|^(2)`
`" "A^(2) + B^(2) + 2vecA. vecB - A^(2)- B^(2) + 2vecA.vecB`
`" "4vecA. vecB`
Promotional Banner

Topper's Solved these Questions

  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -1|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise PASSAGE -2|3 Videos
  • VECTORS

    GRB PUBLICATION|Exercise MATRIX- MATCH|4 Videos
  • UNITS AND DIMENSIONS

    GRB PUBLICATION|Exercise Link Compression|6 Videos

Similar Questions

Explore conceptually related problems

If vector A is perpendicular to vectors B and |vecA + vecB| =n|vecA +vecB| then the value of n.

If |veca xx vecb|^(2) + |veca.vecb|^(2)=144 and |veca|=4 , then find the value of |vecb|

If |vecA xx vecB| = sqrt3 vecA *vecB , then the value of |vecA + vecB| is :

(vecA+2vecB).(2vecA-3vecB) :-

Find vecA*vecB if |vecA|= 2, |vecB|= 5, and |vecAxx vecB|=8

If |vecA + vecB| = |vecA - vecB| , then the angle between vecA and vecB will be

What is the value of (vecA + vecB) * ( vecA xx vecB) ?

l veca . m vecb = lm(veca . vecb) and veca . vecb = 0 then veca and vecb are perpendicular if veca and vecb are not null vector

Show that (veca xx vecb)^(2) = |veca| ^(2) |vecb|^(2) - (veca.vecb)^(2) = |(veca.veca)/(veca. vecb)(veca.vecb)/(vecb.vecb)|