Home
Class 12
CHEMISTRY
Calculate de Broglie wavelenth of a neut...

Calculate de Broglie wavelenth of a neutron (mass, `m=1.6xx10^(-27)` kg) moving with kinetic energy of 0.04 eV-

A

146 `"Å"`

B

14.6 `"Å"`

C

1460 `"Å"`

D

1.46 `"Å"`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the de Broglie wavelength of a neutron with a given mass and kinetic energy, we can follow these steps: ### Step 1: Write down the formula for de Broglie wavelength The de Broglie wavelength (λ) is given by the formula: \[ \lambda = \frac{h}{\sqrt{2 m KE}} \] where: - \( h \) is Planck's constant (\( 6.626 \times 10^{-34} \, \text{Js} \)), - \( m \) is the mass of the particle (in kg), - \( KE \) is the kinetic energy (in joules). ### Step 2: Convert kinetic energy from electron volts to joules The kinetic energy is given as \( 0.04 \, \text{eV} \). To convert this to joules, we use the conversion factor \( 1 \, \text{eV} = 1.6 \times 10^{-19} \, \text{J} \): \[ KE = 0.04 \, \text{eV} \times 1.6 \times 10^{-19} \, \text{J/eV} = 6.4 \times 10^{-21} \, \text{J} \] ### Step 3: Substitute the values into the de Broglie wavelength formula Now we can substitute the values into the formula: - Mass of neutron, \( m = 1.6 \times 10^{-27} \, \text{kg} \) - Kinetic energy, \( KE = 6.4 \times 10^{-21} \, \text{J} \) Substituting these values gives: \[ \lambda = \frac{6.626 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-27} \times 6.4 \times 10^{-21}}} \] ### Step 4: Calculate the denominator First, calculate \( 2 \times 1.6 \times 10^{-27} \times 6.4 \times 10^{-21} \): \[ 2 \times 1.6 \times 10^{-27} \times 6.4 \times 10^{-21} = 2.048 \times 10^{-47} \] Now, take the square root: \[ \sqrt{2.048 \times 10^{-47}} = 4.53 \times 10^{-24} \] ### Step 5: Calculate the de Broglie wavelength Now substitute back into the equation for λ: \[ \lambda = \frac{6.626 \times 10^{-34}}{4.53 \times 10^{-24}} \approx 1.46 \times 10^{-10} \, \text{m} \] ### Step 6: Convert to angstroms Since \( 1 \, \text{angstrom} = 10^{-10} \, \text{m} \): \[ \lambda \approx 1.46 \, \text{angstroms} \] ### Final Answer The de Broglie wavelength of the neutron is approximately \( 1.46 \, \text{Å} \). ---

To calculate the de Broglie wavelength of a neutron with a given mass and kinetic energy, we can follow these steps: ### Step 1: Write down the formula for de Broglie wavelength The de Broglie wavelength (λ) is given by the formula: \[ \lambda = \frac{h}{\sqrt{2 m KE}} \] where: ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|483 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|24 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

Calculate the wavelength a particle of mass m = 6.6 xx 10^(-27) kg moving with kinetic energy 7.425 xx 10^(-13) J ( h = 6.6 xx 10^(-34) kg m^(2) s ^(-1)

Calculate the de Broglie wavelength of a ball of mass 0.1 kg moving with a speed of 30 ms^(-1)

De Broglie wavelength of 0.05 eV thermal neutron is

Calculate the de Broglie wavelength of a ball of mass 0.1 kg moving with a speed of 60ms^(-1) .

The de-Broglie wavelength of an electron is 0.4 xx 10^(-10) m when its kinetic energy is 1.0 keV. Its wavelength will be 1.0 xx 10^(-10) m, When its kinetic energy is

Calculate de - Broglie wavelength of an electron having kinetic energy 2.8xx10^(-23)J electron having kinetic energy 2.8xx10^(-23)J. (m_(e)=9.1xx10^(-31)kg)

The de Broglie wavelength of neutrons in thermal equilibrium is (given m_n=1.6xx10^(-27) kg)