Home
Class 12
CHEMISTRY
If K(1) and K(2) are the equilibrium con...

If `K_(1)` and `K_(2)` are the equilibrium constant for the two reations
`XeF_(4(g))+H_(2)O_((g))hArrXeOF_(4(g))+2HF_((g))`
`XeO_(4(g))+XeF_(6(g))hArrXeOF_(4(g))+XeO_(3)F_(2(g))`
The equilibrium constant for the reaction
`XeO_(4(g))+2HF_((g))hArrXeO_(3)F_(2(g))+H_(2)O_((g))` is

A

`K_(1)K_(2)`

B

`K_(1)//K_(2) ^(2)`

C

`K_(2)//K_(1)`

D

`K_(1)//K_(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant for the reaction \[ \text{XeO}_4(g) + 2\text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] we will use the equilibrium constants \( K_1 \) and \( K_2 \) for the two given reactions. ### Step 1: Write down the given reactions and their equilibrium constants. 1. **First Reaction:** \[ \text{XeF}_4(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{XeOF}_4(g) + 2\text{HF}(g) \quad (K_1) \] 2. **Second Reaction:** \[ \text{XeO}_4(g) + \text{XeF}_6(g) \rightleftharpoons \text{XeOF}_4(g) + \text{XeO}_3\text{F}_2(g) \quad (K_2) \] ### Step 2: Reverse the second reaction to find the equilibrium constant. When we reverse the second reaction, the equilibrium constant becomes the reciprocal of \( K_2 \): \[ \text{XeOF}_4(g) + \text{XeO}_3\text{F}_2(g) \rightleftharpoons \text{XeO}_4(g) + \text{XeF}_6(g) \quad \left( \frac{1}{K_2} \right) \] ### Step 3: Combine the reactions. Now we will combine the reversed second reaction with the first reaction. - From the first reaction: \[ \text{XeF}_4(g) + \text{H}_2\text{O}(g) \rightleftharpoons \text{XeOF}_4(g) + 2\text{HF}(g) \] - From the reversed second reaction: \[ \text{XeOF}_4(g) + \text{XeO}_3\text{F}_2(g) \rightleftharpoons \text{XeO}_4(g) + \text{XeF}_6(g) \] ### Step 4: Cancel out common species. When we add these two reactions, we can cancel out the common species: - \(\text{XeOF}_4(g)\) cancels out. - The overall reaction becomes: \[ \text{XeO}_4(g) + 2\text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] ### Step 5: Determine the equilibrium constant for the overall reaction. The equilibrium constant for the overall reaction is given by the product of the equilibrium constants of the individual reactions: \[ K = K_1 \cdot \left( \frac{1}{K_2} \right) = \frac{K_1}{K_2} \] ### Final Answer: The equilibrium constant for the reaction \[ \text{XeO}_4(g) + 2\text{HF}(g) \rightleftharpoons \text{XeO}_3\text{F}_2(g) + \text{H}_2\text{O}(g) \] is \[ K = \frac{K_1}{K_2} \]
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|483 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|24 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

If K_(1) and K_(2) are respective equilibrium constants for two reactions : XeF_(6)(g) +H_(2)O hArr XeOF_(4)(g) +2HF_(g) XeO_(4)(g)+XeF_(6)(g)hArr XeOF_(4)(g)+XeO_(3)F_(2)(g) Then equilibrium constant for the reaction XeO_(4)(g)+2HF(g) hArr XeO_(3)F_(2)(g)+H_(2)O(g) will be

The equilibrium constant for the following two reactions are K_(1) and K_(2) respectively. XeF_(6)(g)+H_(2)O(g) hArrXeOF_(4)(g)+2HF(g) XeO_(4)(g)+XeF_(6)(g)hArrXeOF_(4)(g)+XeO_(3)F_(2)(g) The equilibrium constant for the given reactiono is :

Write the equilibrium constant of the reaction C(s)+H_(2)O(g)hArrCO(g)+H_(2)(g)

If 2H_(2)O_((g))hArr2H_(2(g))+O_(2(g)), K_(1)=2.0xx10^(-13) 2CO_(2(g))hArr2CO_((g))+O_(2(g)), K_(2)=7.2xx10^(-12) Find the equilibrium constant for the reaction CO_(2(g))+H_(2(g))hArrCO_((g))+H_(2)O_((g))

The equilibrium constant K_(p) for the reaction H_(2)(g)+I_(2)(g) hArr 2HI(g) changes if:

The equilibrium constant for the following reactions at 1400 K are given. 2H_(2)O(g)hArr2H_(2)(g) + O_(2)(g) , K_(1)=2.1×x10^(-13) 2CO_(2)(g) hArr2CO(g)+O_(2)(g),K_(2) = 1.4 x× 10^(-12) Then, the equilibrium constant K for the reaction H_(2)(g) + CO_(2)(g)hArrCO(g) + H_(2)O(g) is

Equilibrium constants for the following reaction 1200 K are given: 2H_2O (g) hArr 2H_2(g) +O_2(g) , " " K_1=6.4xx10^(-8) 2CO_2(g) hArr 2CO(g) +O_2(g) , " " K_2=1.6xx10^(-6) The equilibrium constant for the reaction H_2(g) + CO_2(g) hArr CO(g) +H_2O(g) at 1200 K will be