Home
Class 12
CHEMISTRY
Calculate the DeltaG^(@) of the followin...

Calculate the `DeltaG^(@)` of the following reaction :-
`Fe^(+2)(aq)+Ag^(+)(aq)toFe^(+2)(aq)+Ag(s)`
`E_(Ag^(+)//Ag)=0.8V" "E_(Fe^(+3)//Fe^(+2))^(0)=0.77V`

A

`-2895 J mol^(-1)`

B

`-3845 J mol^(-1)`

C

`-1874 J mol^(-1)`

D

`-375 J mol^(-1)`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the standard Gibbs free energy change (ΔG°) for the given reaction: **Reaction:** \[ \text{Fe}^{2+}(aq) + \text{Ag}^{+}(aq) \rightarrow \text{Fe}^{3+}(aq) + \text{Ag}(s) \] **Given:** - Standard reduction potential for \( \text{Ag}^{+}/\text{Ag} = 0.80 \, \text{V} \) - Standard reduction potential for \( \text{Fe}^{3+}/\text{Fe}^{2+} = 0.77 \, \text{V} \) ### Step 1: Identify the half-reactions and their potentials 1. **Reduction half-reaction for Silver:** \[ \text{Ag}^{+} + e^{-} \rightarrow \text{Ag}(s) \quad E^{\circ} = 0.80 \, \text{V} \] 2. **Reduction half-reaction for Iron:** \[ \text{Fe}^{3+} + e^{-} \rightarrow \text{Fe}^{2+} \quad E^{\circ} = 0.77 \, \text{V} \] ### Step 2: Determine the anode and cathode - The half-reaction with the higher reduction potential will occur at the cathode. Here, silver has a higher reduction potential (0.80 V) than iron (0.77 V). - Therefore, the cathode is where silver is reduced, and the anode is where iron is oxidized. ### Step 3: Calculate the standard cell potential (E°cell) Using the formula: \[ E^{\circ}_{cell} = E^{\circ}_{cathode} - E^{\circ}_{anode} \] Substituting the values: \[ E^{\circ}_{cell} = 0.80 \, \text{V} - 0.77 \, \text{V} = 0.03 \, \text{V} \] ### Step 4: Calculate ΔG° The relationship between Gibbs free energy change and cell potential is given by: \[ \Delta G^{\circ} = -nFE^{\circ}_{cell} \] Where: - \( n \) = number of moles of electrons transferred (1 for this reaction) - \( F \) = Faraday's constant \( (96500 \, \text{C/mol}) \) - \( E^{\circ}_{cell} = 0.03 \, \text{V} \) Substituting the values: \[ \Delta G^{\circ} = -1 \times 96500 \, \text{C/mol} \times 0.03 \, \text{V} \] \[ \Delta G^{\circ} = -2895 \, \text{J/mol} \] ### Final Answer \[ \Delta G^{\circ} = -2895 \, \text{J/mol} \]

To calculate the standard Gibbs free energy change (ΔG°) for the given reaction: **Reaction:** \[ \text{Fe}^{2+}(aq) + \text{Ag}^{+}(aq) \rightarrow \text{Fe}^{3+}(aq) + \text{Ag}(s) \] **Given:** - Standard reduction potential for \( \text{Ag}^{+}/\text{Ag} = 0.80 \, \text{V} \) - Standard reduction potential for \( \text{Fe}^{3+}/\text{Fe}^{2+} = 0.77 \, \text{V} \) ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|483 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|24 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

What is DeltaG^(@) for the following reaction Cu^(+2)(aq)+2Ag(s)rarrCu(s)+2Ag E_(Cu^(+2)//Cu)^(@)=0.34V E_(Ag^(+)//Ag)^(@)=0.8V

Calculate DeltaG^(@) for the reaction : Cu^(2+)(aq) +Fe(s) hArr Fe^(2+)(aq) +Cu(s) . Given that E_(Cu^(2+)//Cu)^(@) = 0.34 V , E_(Fe^(+2)//Fe)^(@) =- 0.44 V

Calculate the equilibrium constant for the reaction : Fe(s)Cd^(2+)(aq)harrFe^(2+)(aq)+Cd(s) ("Given" E_(cd^(2+)//Cd)^(@)=-0.40 V, E_(Fe^(2+)//Fe)^(@)=-0.44 V)

Calculate the standard cell potentials of the galvanic cells in which the following reactions take place. (a) " " 2Cr(s)+3Cd^(2+) to 2Cd^(3+)(aq)+3Cd(s) Given E_(Cr^(3+)//Cr)^(@)=-0.74" V" , E_(Cd^(2+)//Cd)^(@)=-0.40" V" (b) " " Fe^(2+)(aq)+Ag^(+)(aq) to Fe^(3+)(aq)+Ag(s) Gievn E_(Ag^(+)//Ag)^(@)=0.80" V" ,E_(Fe^(3+)//Fe^(2+))^(@)=0.77 " V" Also calculate DeltaG^(@) and equilibrium constant for the reaction.

Use E^(@) values to calculate Delta G^(@) for the reaction Fe^(2+) + Ag^(+) rarr Fe^(3+) + Ag E_(Ag//Ag)^(@) = 0.80 volt and E_(Pt//Fe^(3+))^(@) = 0.77 volt

The equilibrium constant (K) for the reaction Fe^(2+)+(aq)Ag^(+)(aq)toFe^(3+)(aq)+Ag(s) will be Given E^(@)(Fe^(3+)//Fe^(2+))=0.77V, E^(@)(Ag^(+)//Ag)=0.80V

Calculate the standard cell potential (in V) of the cell in which following reaction takes place: Fe ^( 2 + ) ( aq ) + A g^ + ( aq ) to Fe ^( 3 + ) ( aq ) + Ag (s ) Given that E _ (Ag ^ + // Ag ) ^ 0 = x V , E _ ( Fe^( 2+ ) // Fe ) ^0 = yV , E _ (Fe^(3+)//F e )^0 = z V

Calculate the emf of the following cell: Cu(s)|Cu^(2+) (aq)||Ag^(+) (aq)| Ag(s) Given that, E_(Cu^(2+)//Cu)^(@)=0.34 V, E_(Ag//Ag^(+))^(@)=-0.80 V

Consider Delta G^(@) for the following cell reaction : Zn (s) + Ag_(2)O(s)+H_(2)O(l) hArr Zn^(2+)(aq)+2Ag(s)+2OH^(-)(aq) E_(Ag^(+)//Ag)^(@) = +0.80 and E_(Zn^(2+)//Zn)^(@) = - 0.76 V