Home
Class 12
CHEMISTRY
Calculate E(cell) of the reaction {:(...

Calculate `E_(cell)` of the reaction
`{:(Mg(s),+2Ag^(+)to,Mg^(+2)+,2Ag(s),),(,(0.0001M),(0.100M),,):}`
`If E_(cell)^(0)=3.17V`

A

`-2.96 V`

B

`+2.96 V`

C

3.38 V

D

`-3.38 V`

Text Solution

AI Generated Solution

The correct Answer is:
To calculate the cell potential \( E_{\text{cell}} \) for the given reaction: \[ \text{Mg(s)} + 2\text{Ag}^+ \rightarrow \text{Mg}^{2+} + 2\text{Ag(s)} \] with the standard cell potential \( E_{\text{cell}}^{\circ} = 3.17 \, \text{V} \), we will use the Nernst equation: \[ E_{\text{cell}} = E_{\text{cell}}^{\circ} - \frac{0.0591}{n} \log Q \] where: - \( n \) is the number of moles of electrons transferred in the reaction. - \( Q \) is the reaction quotient. ### Step 1: Identify the values for \( n \) and \( Q \) In this reaction: - Magnesium (Mg) loses 2 electrons to become \( \text{Mg}^{2+} \), so \( n = 2 \). - The reaction quotient \( Q \) is given by the formula: \[ Q = \frac{[\text{Mg}^{2+}]}{[\text{Ag}^+]^2} \] Given: - \( [\text{Mg}^{2+}] = 0.1 \, \text{M} \) - \( [\text{Ag}^+] = 0.0001 \, \text{M} \) Thus, we can calculate \( Q \): \[ Q = \frac{0.1}{(0.0001)^2} = \frac{0.1}{0.00000001} = 10^8 \] ### Step 2: Substitute values into the Nernst equation Now substituting the values into the Nernst equation: \[ E_{\text{cell}} = 3.17 \, \text{V} - \frac{0.0591}{2} \log(10^8) \] ### Step 3: Calculate \( \log(10^8) \) We know that: \[ \log(10^8) = 8 \] ### Step 4: Substitute and simplify Now substituting \( \log(10^8) \) back into the equation: \[ E_{\text{cell}} = 3.17 \, \text{V} - \frac{0.0591}{2} \cdot 8 \] Calculating \( \frac{0.0591}{2} \cdot 8 \): \[ \frac{0.0591}{2} = 0.02955 \] \[ 0.02955 \cdot 8 = 0.2364 \] ### Step 5: Final calculation Now substituting this back into the equation: \[ E_{\text{cell}} = 3.17 \, \text{V} - 0.2364 = 2.9336 \, \text{V} \] ### Step 6: Round to appropriate significant figures Rounding to four significant figures, we get: \[ E_{\text{cell}} \approx 2.934 \, \text{V} \] ### Final Answer The cell potential \( E_{\text{cell}} \) is approximately \( 2.934 \, \text{V} \). ---
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|483 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|24 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

Calculate E_("cell")^(0) of the following galvanic cell Mg(s) // Mg^(2+)(1 M) // Ag^(+)(1 M) // Ag(s) if E_(Mg)^(0) = -2.37V and E_(Ag)^(0) = 0.8V . Write cell reactions involved in the above cell. Also mention if cell reaction is spontaneous or not.

Calculate equilibrium constant for the reaction : Mg(s) |Mg^(2+)(0.001 M) || Cu^(2+)(0.0001 M)|Cu(s) Given E_((Mg^(2+)//Mg))^(@)=-2.37" V " , E_((Cu^(2+)//Cu))^(@)=0.34" V "

Represent the cell in which following reaction takes place : Mg(s)+2Ag^(o+)(0.0001M)rarr Mg^(2+)(0.130M)+2Ag(s) calculate its E_(cell) if E^(c-)._(cell)=3.17V.

Calculate emf and DeltaG for the following reaction at 298 K Mg(s)|Mg^(2+)(0.01 M)||Ag^(+)(0.0001 M)|Ag(s) Given E_((Mg^(2+)//Mg))^(@)=-2.37" V ", E_((Ag^(+)//Ag))^(@)=+0.80" V "

Calculate the e.m.f. of the cell in which the following reaction takes place : Ni(s) +2Ag^(+)(0.002 M)to Ni^(2+)(0.160 M)+2Ag(s) Given E_(cell)^(@) =1.05 v

Calculate the emf of the following cell at 298K: Mg(s)|Mg^(2+)(0.1M)||Cu^(2+)(1.0xx10^(-3)M)|Cu(s) [Given= E_(Cell)^(@)=2.71V ]