Home
Class 12
CHEMISTRY
The equilibrium constant (K) for the rea...

The equilibrium constant (K) for the reaction
`Fe^(2+)+(aq)Ag^(+)(aq)toFe^(3+)(aq)+Ag(s)` will be
Given `E^(@)(Fe^(3+)//Fe^(2+))=0.77V,`
`E^(@)(Ag^(+)//Ag)=0.80V`

A

100

B

3.16

C

10

D

0.5

Text Solution

AI Generated Solution

The correct Answer is:
To find the equilibrium constant (K) for the reaction \[ \text{Fe}^{2+} (aq) + \text{Ag}^+ (aq) \rightleftharpoons \text{Fe}^{3+} (aq) + \text{Ag} (s) \] we will follow these steps: ### Step 1: Identify the half-reactions and their standard electrode potentials. The given standard electrode potentials are: - For the reduction of \(\text{Fe}^{3+}\) to \(\text{Fe}^{2+}\): \[ E^\circ(\text{Fe}^{3+}/\text{Fe}^{2+}) = 0.77 \, \text{V} \] - For the reduction of \(\text{Ag}^+\) to \(\text{Ag}\): \[ E^\circ(\text{Ag}^+/Ag) = 0.80 \, \text{V} \] ### Step 2: Determine the overall cell potential (\(E^\circ_{\text{cell}}\)). The overall cell potential can be calculated using the formula: \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} \] In our case: - \(\text{Ag}^+\) is reduced at the cathode (0.80 V). - \(\text{Fe}^{3+}\) is oxidized at the anode (0.77 V). Thus, \[ E^\circ_{\text{cell}} = 0.80 \, \text{V} - 0.77 \, \text{V} = 0.03 \, \text{V} \] ### Step 3: Relate the cell potential to the Gibbs free energy change (\(\Delta G^\circ\)). The relationship between the standard cell potential and the Gibbs free energy change is given by: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] where: - \(n\) = number of moles of electrons transferred (which is 1 for this reaction), - \(F\) = Faraday's constant (\(96500 \, \text{C/mol}\)), - \(E^\circ_{\text{cell}}\) = \(0.03 \, \text{V}\). Substituting the values: \[ \Delta G^\circ = -1 \times 96500 \times 0.03 = -2895 \, \text{J/mol} \] ### Step 4: Relate \(\Delta G^\circ\) to the equilibrium constant (K). The relationship between \(\Delta G^\circ\) and the equilibrium constant is given by: \[ \Delta G^\circ = -2.303RT \log K \] where: - \(R\) = gas constant (\(8.314 \, \text{J/(mol K)}\)), - \(T\) = temperature in Kelvin (standard temperature \(298 \, \text{K}\)). Rearranging gives: \[ \log K = -\frac{\Delta G^\circ}{2.303RT} \] Substituting the values: \[ \log K = -\frac{-2895}{2.303 \times 8.314 \times 298} \] Calculating the denominator: \[ 2.303 \times 8.314 \times 298 \approx 5730.2 \] Now substituting: \[ \log K = \frac{2895}{5730.2} \approx 0.505 \] ### Step 5: Calculate K from \(\log K\). To find \(K\): \[ K = 10^{0.505} \approx 3.16 \] ### Final Answer: Thus, the equilibrium constant \(K\) for the reaction is approximately \(3.16\). ---

To find the equilibrium constant (K) for the reaction \[ \text{Fe}^{2+} (aq) + \text{Ag}^+ (aq) \rightleftharpoons \text{Fe}^{3+} (aq) + \text{Ag} (s) \] we will follow these steps: ### Step 1: Identify the half-reactions and their standard electrode potentials. The given standard electrode potentials are: ...
Promotional Banner

Topper's Solved these Questions

  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise INORGANIC CHEMISTRY|300 Videos
  • CHEMISTRY AT A GLANCE

    ALLEN|Exercise ORGANIC CHEMISTRY|483 Videos
  • Chemical Equilibrium

    ALLEN|Exercise All Questions|24 Videos
  • ELECTROCHEMISTRY

    ALLEN|Exercise EXERCISE -05 [B]|38 Videos

Similar Questions

Explore conceptually related problems

The equilibrium constant (K) for the reaction Cu(s)+2Ag^(+) (aq) rarr Cu^(2+) (aq)+2Ag(s) , will be [Given, E_(cell)^(@)=0.46 V ]

The equilibrium constant of the reaction : Zn(s)+2Ag^(+)(aq)toZn(aq)+2Ag(s),E^(@)=1.50V at 298 K is

The equilbrium constant for the reaction : Cu + 2 Ag^(+) (aq) rarr Cu(2+) (aq) +2 Ag, E^@ = 0. 46 V at 299 K is

Calculate the equilibrium constant for the reaction : Fe(s)Cd^(2+)(aq)harrFe^(2+)(aq)+Cd(s) ("Given" E_(cd^(2+)//Cd)^(@)=-0.40 V, E_(Fe^(2+)//Fe)^(@)=-0.44 V)

Calculate the DeltaG^(@) of the following reaction :- Fe^(+2)(aq)+Ag^(+)(aq)toFe^(+2)(aq)+Ag(s) E_(Ag^(+)//Ag)=0.8V" "E_(Fe^(+3)//Fe^(+2))^(0)=0.77V

Calculate the standard reduction potentials of galvanic cells in which reaction are Fe^(2+) (aq) + Ag^(+) (aq) to Fe^(3+) (aq) + Ag (s) Given that E^(Theta) (Cr^(3+) //Cr) = -0.74 V , E^(Theta) (Cd^(2+) // Cd) = -0.40 V , E^(Theta) (Fe^(3+) // Fe^(2+)) = 0.77 V , E^(Theta) (Ag^(+) // Ag) = 0.80 V

Calculate equilibrium constant for the reaction at 25^(@)C Cu(s)+2Ag^(+)(aq) hArr Cu^(2+)(aq)+2Ag(s) E^(@) value of the cell is 0.46 " V " .

Calculate the equilibrium constant of the reaction : Cu(s)+2Ag(aq) hArrCu^(2+)(aq) +2Ag(s) E^(c-)._(cell)=0.46V