Home
Class 11
MATHS
If y=log(sqrt(x)+(1)/(sqrt(x)))^(2), the...

If `y=log(sqrt(x)+(1)/(sqrt(x)))^(2),` then ,`x(x+1)^(2)y_(2)+(x+1)^(2)y_(1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

y=(sqrt(x)+(1)/(sqrt(x)))(1+x+x^(2))

If y=log(sqrt(x)+(1)/(sqrt(x))), prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=log(sqrt(x)+(1)/(sqrt(x))). Prove that (dy)/(dx)=(x-1)/(2x(x+1))

If y=(sinh^(-1)x)/(sqrt(1+x^(2))) then (1+x^(2))y_(2)+3xy_(1)=

If y=x+sqrt(x^(2)-1)," then "(x^(2)-1)y_(2)+xy_(1)=

If y=sqrt(x)+(1)/sqrt(x) , then show that 2x(dy)/(dx)+y=2sqrt(x) .

y=[log(x+sqrt(x^(2)+1))]^(2) then prove that (x^(2)+1)y_(2)+xy_(1)=2

If y=log(x+sqrt(x^(2)-1)), then (dy)/(dx)=