Home
Class 9
MATHS
Find the following products: (x+y+2z)(x...

Find the following products: `(x+y+2z)(x^2+y^2+4z^2-x y-2y z-2x z)`

Text Solution

AI Generated Solution

To find the product \((x+y+2z)(x^2+y^2+4z^2-xy-2yz-2xz)\), we can utilize the algebraic identity: \[ a^3 + b^3 + c^3 - 3abc = (a+b+c)(a^2 + b^2 + c^2 - ab - ac - bc) \] ### Step-by-Step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

Find the product: (x+y+2z)(x^(2)+y^(2)+4z^(2)-xy-2yz-2zx)

Find the product. (x+y-z)(x^2+y^2+z^2-xy+yz+zx)

Find the product. (x-y-z)(x^2+y^2+z^2+xy-yz+xz)

Factorize each of the following expressions: x(x^(2)+y^(2)-z^(2))+y(-x^(2)-y^(2)+z^(2))-z(x^(2)+y^(2)-z^(2))

2x = 3y = 4z, x: y: z

The product (x+y+z)[(x-y)^(2)+(y-z)^(2)+(z-x)^(2)] is equal to

Show that : |x y z x^2y^2z^2x^3y^3z^3|=x y z(x-y)(y-z)(z-x)dot

Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}|=(y-z)(z-x)(x-y)(x+y+z)

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)