Home
Class 9
MATHS
If a^2+b^2+c^2-a b-b c-c a=0, prove tha...

If `a^2+b^2+c^2-a b-b c-c a=0,` prove that `a=b=c`

Text Solution

AI Generated Solution

To prove that \( a = b = c \) given the equation \( a^2 + b^2 + c^2 - ab - bc - ca = 0 \), we can follow these steps: ### Step 1: Start with the given equation We have: \[ a^2 + b^2 + c^2 - ab - bc - ca = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • AREA OF PARALLELOGRAMS AND TRIANGLES

    RD SHARMA|Exercise All Questions|205 Videos

Similar Questions

Explore conceptually related problems

If a^(2),b^(2) and c^(2) are in AP then prove that (a)/(b+c),(b)/(c+a) and (c)/(a+b) are also in A.P.

If a + b + c = 0 , prove that a^(4) + b^(4) + c^(4) = 2(b^(2)c^(2)+c^(2)a^(2)+a^(2)b^(2)) = 1//2 (a^(2) + b^(2) + c^(2))^(2)

If a, b, c are in HP then prove that b^2(a-c)^2=2{c^2(b-a)^2+a^2(c-b)^2} .

If (b^2+c^2-a^2)/(2b c),(c^2+a^2-b^2)/(2c a),(a^2+b^2-c^2)/(2a b) are in A.P. and a+b+c=0 then prove that a(b+c-a),b(c+a-b),c(a+b-c) are in A.P.

If a!=b!=c\ a n d\ |{:(a, b, c), (a^2,b^2,c^2), (b+c, c+a, a+b):}|=0 then a+b+c=0 b. a b+b c+c a=0 c. a^2+b^2+c^2=a b+b c+c a d. a b c=0

If the roots of the quadratic equation (a-b) x^(2) + (b - c) x + (c - a) =0 are equal , prove that b +c = 2a

If the roots of the equation (b-c)x^(2)+(c-a)x+(a-b)=0 are equal,then prove that 2b=a+c

If ab+bc+ca=0 then prove that a^(2)b^(2)+b^(2)c^(2)+c^(2)a^(2)=-2abc (a+b+c)

Given a^2+b^2=c^2 . Prove that log_(b+c)a+log_(c-b)a=2 log_(c+b)a.log_(c-b)a,forallagt0,ane1 c-bgt0 , c+bgt0 c-bne1 , c+bne1 .

If a, b, c, d are in G.P., then prove that: (b-c)^(2)+(c-a)^(2)+(d-b)^(2)=(a-d)^(2)