Home
Class 12
CHEMISTRY
A and B are...


A and B are

A

`CH_3-overset(CH_3)overset(|)underset(""_(18)OH)underset(|)C-underset(OH)underset(|)CH_2,CH_3-overset(CH_3)overset(|)underset(OH)underset(|)C-underset(OCH_3)underset(|)(CH_2)`

B

`CH_3-overset(CH_3)overset(|)underset(OH_(18))underset(|)C-underset(OH)underset(|)CH_2,CH_3-overset(CH_3)overset(|)underset(OH)underset(|)C-underset(18)underset(OCH_3)underset(|)(CH_2)`

C

`CH_3-overset(CH_3)overset(|)underset(""_(18)OH)underset(|)C-underset(OH)underset(|)(CH_2),CH_3-overset(CH_3)overset(|)underset(""_(18)OH)underset(|)C-underset(""^(18)OH)underset(|)(CH_2)`

D

`CH_3-overset(CH_3)overset(|)underset(""_(18)OH)underset(|)C-underset(""^(18)OH)underset(|)(CH_2),CH_3-overset(CH_3)overset(|)underset(OMe)underset(|)C-underset(OH)underset(|)(CH_2)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • ALCOHOLS & ETHERS

    MOTION|Exercise EXERCISE -2 (LEVEL -II) MULTIPLE CORRECT JEE ADVANCED|21 Videos
  • ALCOHOLS & ETHERS

    MOTION|Exercise EXERCISE -3 OBJECTIVE PROBLEMS JEE ADVANCED|17 Videos
  • ALCOHOLS & ETHERS

    MOTION|Exercise EXERCISE -1 OBJECTIVE PROBLEMS JEE MAIN|47 Videos
  • ALKYI HALIDE

    MOTION|Exercise Exercise - 4 | Level-II|8 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are three coplanar vectors. If a is not parallel to b, show that c=(|[c*a, a*b], [c*b, b*b]|a+|[a*a, c*a], [a*b, c*b]|b)/(|[a*a, a*b], [a*b, b*b]|) .

If the vectors a, b and c are coplanar, then |{:(a, b, c),(a*a, a*b,a*c),(b*a,b*b,b*c):}| is equal to

the symmetric difference of A and B is not equal to (A-B)nn(B-A)(A-B)uu(B-A)(A uu B)-(A nn B){(A uu B)-A}uu{A nn B}

If a,b and c are in GP,then (b-a)/(b-c)+(b+a)/(b+c)=

For all set A and B, (A uu B) - B = A - B .

Find the sum upto n terms of the series 0.b+0.b b+0.b b b +0.b b b b+"......",AA " b" in N " and "1 le b le 9.

If A = (a + b , a-b) and B (-a + b, -a-b), then find the distance AB .

If (a+b). (a-b) = 8 and |a| = 8 |b|, then the values of |a| and |b| are