Home
Class 12
MATHS
Find the value of the determinant |(.^...

Find the value of the determinant
`|(.^(n)C_(r-1),.^(n)C_(r),(r+1)^(n+2)C_(r+1)),(.^(n)C_(r),.^(n)C_(r+1),(r+2)^(n+2)C_(r+2)),(.^(n)C_(r+1),.^(n)C_(r+2),(r+3)^(n+2)C_(r+3))|`

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-1|13 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

""^(n)C_(r+1)+^(n)C_(r-1)+2.""^(n)C_(r)=

the roots of the equations |{:(.^(x)C_(r),,.^(n-1)C_(r),,.^(n-1)C_(r-1)),(.^(x+1)C_(r),,.^(n)C_(r),,.^(n)C_(r-1)),(.^(x+2)C_(r),,.^(n+1)C_(r),,.^(n+1)C_(r-1)):}|=0

If .^(n)C_(r-1)=.^(n)C_(3r) , find r.

det[[ The value of the determinant nC_(r-1),nC_(r),(r+1),n+2C_(r+1)nC_(r),nC_(r+1),(r+2),n+2C_(r+2)nC_(r+1),nC_(r+2),(r+3),n+2C_(r+3)]] is

Prove that : .^(n-1)C_(r)+.^(n-2)C_(r)+.^(n-3)C_(r)+.........+.^(r)C_(r)=.^(n)C_(r+1) .

The expression ""^(n)C_(r)+4.""^(n)C_(r-1)+6.""^(n)C_(r-2)+4.""^(n)C_(r-3)+""^(n)C_(r-4)

1+^(n)C_(1)+^(n+1)C_(2)+^(n+2)C_(3)+......+^(n+r-1)C_(r)