Home
Class 12
MATHS
Without expanding as far as possible, pr...

Without expanding as far as possible, prove that
`|{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|` = `(x-y)(y-z)(z-x)(x+y+z)`.

Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-1|13 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that : |{:(1,x,x^(3)),(1,y,y^(3)),(1,z,z^(3)):}|

Prove that : |{:(y+z,x,y),(z+x,z,x),(x+y,y,z):}|=(x+y+z)(x-z)^(2)

x^(3)(y-z)^(3)+y^(3)(z-x)^(3)+z^(3)(x-y)^(3)

prove that: |(y+z,z,y),(z,z+x,x),(y,x,x+y)|=4xyz

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

Without expanding prove that det[[x+y,z,1y+z,x,1z+x,y,1]]=0

What is ((x-y)^(3) + (y-z)^(3) + (z-x)^(3))/(4(x-y)(y-z)(z-x)) equal to ?

Prove the following : |{:(x,x^(2),y+z),(y,y^(2),z+x),(z,z^(2),x+y):}|=(y-z)(z-x)(x-y)(x+y+z)