Home
Class 12
MATHS
Let phi(1)(x)=x+a(1),phi(2)(x)=x^(2)+b(1...

Let `phi_(1)(x)=x+a_(1),phi_(2)(x)=x^(2)+b_(1)x+b_(2)`and
`Delta=|(1,1,1),(phi_(1)(x_(1)),phi_(1)(x_(2)),phi_(1)(x_(3))),(phi_(2)(x_(1)),phi_(2)(x_(2)),phi_(2)(x_(3)))|`, then

A

`Delta` is independent of `a_(1)`

B

`Delta` is independent of `b_(1)andb_(2)`

C

`Delta` is independent of `x_(1),x_(2) and x_(3)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ \phi_1(x_1) & \phi_1(x_2) & \phi_1(x_3) \\ \phi_2(x_1) & \phi_2(x_2) & \phi_2(x_3) \end{vmatrix} \] where \(\phi_1(x) = x + a_1\) and \(\phi_2(x) = x^2 + b_1 x + b_2\). ### Step 1: Substitute \(\phi_1\) and \(\phi_2\) Substituting the expressions for \(\phi_1\) and \(\phi_2\) into the determinant, we have: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ x_1 + a_1 & x_2 + a_1 & x_3 + a_1 \\ x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix} \] ### Step 2: Simplify the second row We can factor out \(a_1\) from the second row: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix} + a_1 \begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix} \] The second determinant is zero since two rows are identical. Thus, we have: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ x_1 & x_2 & x_3 \\ x_1^2 + b_1 x_1 + b_2 & x_2^2 + b_1 x_2 + b_2 & x_3^2 + b_1 x_3 + b_2 \end{vmatrix} \] ### Step 3: Perform row operations Now, we can perform row operations to simplify the determinant. We will subtract the first row from the second and the third row: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 \\ (x_1^2 + b_1 x_1 + b_2) - (x_1) & (x_2^2 + b_1 x_2 + b_2) - (x_2) & (x_3^2 + b_1 x_3 + b_2) - (x_3) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} 1 & 1 & 1 \\ 0 & x_2 - x_1 & x_3 - x_1 \\ x_1^2 - x_1 + b_1 x_1 + b_2 & x_2^2 - x_2 + b_1 x_2 + b_2 & x_3^2 - x_3 + b_1 x_3 + b_2 \end{vmatrix} \] ### Step 4: Factor out common terms Notice that the second row can be factored out: \[ \Delta = (x_2 - x_1)(x_3 - x_1) \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ \text{(some polynomial terms)} \end{vmatrix} \] ### Step 5: Evaluate the determinant The determinant will ultimately yield a polynomial in \(x_1, x_2, x_3\) that is independent of \(a_1, b_1, b_2\). ### Conclusion The final expression for \(\Delta\) can be expressed in terms of the differences \(x_1 - x_2\), \(x_1 - x_3\), and \(x_2 - x_3\), confirming that \(\Delta\) is independent of \(a_1\), \(b_1\), and \(b_2\).
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-3|36 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-I)|13 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

Let phi_1(x)=x+a_2, phi_2(x)=x^2+b_1x+b_2, x_1=2,x_2=3 and x_3=5 and Delta=|(1,1,1),( phi_1(x_1), phi_1(x_2), phi_1(x_3)),(phi_2(x_1),phi_2(x_2),phi_2(x_3))| . Find the value of Delta .

If x(x^(4)+1)phi(x)=1 , then int_(1)^(2)phi(x)dx=

If phi(x)=int(phi(x))^(-2)dx and phi(1)=0 then phi(x) is

sin^(4)phi=(3)/(8)+(1)/(8)cos4 phi-(1)/(2)cos2 phi

If f(0)=2,f'(x)=f(x),phi(x)=x+f(x)" then "int_(0)^(1)f(x)phi(x)dx is

Let y=f(x). phi(x) and z=f'(x). phi'(x) prove that (1)/(y)*(d^(2)y)/(dx^(2))=(1)/(f)*(d^(2)f)/(dx^(2))+(1)/(phi)*(d^(2)phi)/(dx^(2))+(2z)/(f phi)

if f(x)=tan x,g(x)=sqrt(x),h(x)=(1-x^(2))/(1+x^(2)) and phi(x)=(ho(gof))(x), then phi((pi)/(3)) is equal to

(tan^(2)phi)/(1+tan^(2)phi)+(cosec ^(2)phi)/(sec^(2)phi+cosec^(2)phi)=1

The domain of definition of f(x)=log_(1.7)((2-phi'(x))/(x+1))^(1//2) , where phi(x)=(x^(3))/(3)-(3)/(2)x^(2)-2x+(3)/(2) , is

If e_(1)=E_(1)sin(omega_(1)t-k_(1)x+phi_(1)) and e_(2)=E_(2)sin(omega_(2)t-k_(2)x+phi_(2)) and e=e_(1)+e_(2) then show that E^(2)=E_(1)^(2)+E_(2)^(2)+2E_(1)E_(2)cos(delta_(2)-delta_(1)) where delta_(1)=omega_(1)t-k_(1)x+phi_(1) and delta_(2)=omega_(2)t-k_(2)x+phi_(2)