Home
Class 12
MATHS
Suppose a(1),a(2),a(3) are in A.P. and b...

Suppose `a_(1),a_(2),a_(3)` are in A.P. and `b_(1),b_(2),b_(3)` are in H.P. and let `Delta=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))|` then prove that

A

`Delta` is independent of `a_(1),a_(2),a_(3)`

B

`A_(1)-Delta,a_(2)-2Delta,a_(3)-3Delta` are in A.P.

C

`b_(1)+Delta,b_(2)+Delta^(2),b_(3)+Delta` are in H.P.

D

`Delta` is independent of `b_(1),b_(2),b_(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the determinant defined by: \[ \Delta = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & a_1 - b_3 \\ a_2 - b_1 & a_2 - b_2 & a_2 - b_3 \\ a_3 - b_1 & a_3 - b_2 & a_3 - b_3 \end{vmatrix} \] ### Step 1: Understand the sequences Since \(a_1, a_2, a_3\) are in Arithmetic Progression (A.P.), we can express them as: - \(a_2 = a_1 + d\) - \(a_3 = a_1 + 2d\) Where \(d\) is the common difference. Since \(b_1, b_2, b_3\) are in Harmonic Progression (H.P.), we can express their reciprocals as being in A.P.: - Let \(b_1 = \frac{1}{x_1}, b_2 = \frac{1}{x_2}, b_3 = \frac{1}{x_3}\) where \(x_1, x_2, x_3\) are in A.P. Thus, we can write: - \(x_2 = x_1 + d'\) - \(x_3 = x_1 + 2d'\) ### Step 2: Substitute into the determinant Now, substituting \(a_2\) and \(a_3\) into the determinant: \[ \Delta = \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & a_1 - b_3 \\ (a_1 + d) - b_1 & (a_1 + d) - b_2 & (a_1 + d) - b_3 \\ (a_1 + 2d) - b_1 & (a_1 + 2d) - b_2 & (a_1 + 2d) - b_3 \end{vmatrix} \] ### Step 3: Simplify the determinant Now, we can perform column operations to simplify the determinant. We will subtract the first column from the second and third columns: \[ \Delta = \begin{vmatrix} a_1 - b_1 & (a_1 - b_2) - (a_1 - b_1) & (a_1 - b_3) - (a_1 - b_1) \\ (a_1 + d) - b_1 & ((a_1 + d) - b_2) - ((a_1 + d) - b_1) & ((a_1 + d) - b_3) - ((a_1 + d) - b_1) \\ (a_1 + 2d) - b_1 & ((a_1 + 2d) - b_2) - ((a_1 + 2d) - b_1) & ((a_1 + 2d) - b_3) - ((a_1 + 2d) - b_1) \end{vmatrix} \] This simplifies to: \[ \Delta = \begin{vmatrix} a_1 - b_1 & b_1 - b_2 & b_1 - b_3 \\ d & d & d \\ 2d & 2d & 2d \end{vmatrix} \] ### Step 4: Factor out common terms Now, we can factor out the common terms from the second and third rows: \[ \Delta = d \cdot 2d \cdot \begin{vmatrix} a_1 - b_1 & b_1 - b_2 & b_1 - b_3 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix} \] ### Step 5: Evaluate the determinant The determinant of a matrix where two rows are identical is zero: \[ \Delta = 0 \] ### Conclusion Thus, we have shown that \(\Delta = 0\), which implies that the rows of the determinant are linearly dependent. Therefore, the conditions given in the problem are satisfied.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MOTION|Exercise EXERCISE-3|36 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-I)|13 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-2 (LEVEL-I)|9 Videos
  • DEFINITE INTEGRATION

    MOTION|Exercise EXERCISE -4 LEVEL-II|33 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos

Similar Questions

Explore conceptually related problems

Suppose a_(1),a_(2),a_(3) are in A.P. and b_(1),b_(2),b_(3) are in H.P. and let /_\=|(a_(1)-b_(1),a_(1)-b_(2),a_(1)-b_(3)),(a_(2)-b_(1),a_(2)-b_(2),a_(2)-b_(3)),(a_(3)-b_(1),a_(3)-b_(2),a_(3)-b_(3))| then

The determinant |(b_(1)+c_(1),c_(1)+a_(1),a_(1)+b_(1)),(b_(2)+c_(2),c_(2)+a_(2),a_(2)+b_(2)),(b_(3)+c_(3),c_(3)+a_(3),a_(3)+b_(3))|

The value of the determinant Delta = |(1 + a_(1) b_(1),1 + a_(1) b_(2),1 + a_(1) b_(3)),(1 + a_(2) b_(1),1 + a_(2) b_(2),1 + a_(2) b_(3)),(1 + a_(3) b_(1) ,1 + a_(3) b_(2),1 + a_(3) b_(3))| , is

if Delta=det[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

det[[2a_(1)b_(1),a_(1)b_(2)+a_(2)b_(1),a_(1)b_(3)+a_(3)b_(1)a_(1)b_(2)+a_(2)b_(1),2a_(2)b_(2),a_(2)b_(3)+a_(3)b_(2)a_(1)b_(3)+a_(3)b_(1),a_(3)b_(2)+a_(2)b_(3),2a_(3)b_(3)]]=

If x in R,a_(i),b_(i),c_(i) in R for i=1,2,3 and |{:(a_(1)+b_(1)x,a_(1)x+b_(1),c_(1)),(a_(2)+b_(2)x,a_(2)x+b_(2),c_(2)),(a_(3)+b_(3)x,a_(3)x+b_(3),c_(3)):}|=0 , then which of the following may be true ?

if quad /_=[[a_(1),b_(1),c_(1)a_(2),b_(2),c_(2)a_(3),b_(3),c_(3)]]

Show that |[a_(1),b_(1),-c_(1)],[-a_(2),-b_(2),c_(2)],[a_(3),b_(3),-c_(3)]|=|[a_(1),b_(1),c_(1)],[a_(2),b_(2),c_(2)],[a_(3),b_(3),c_(3)]|