Home
Class 12
MATHS
f(x)=abs([x]x) -1lexle2 , then f(x) is ...

`f(x)=abs([x]x) -1lexle2` , then f(x) is
(where`[ast]` denotes greatest integer `lex`)

A

cont. at x = 0

B

discont. x = 0

C

not diff. at x = 2

D

diff. at x = 2

Text Solution

AI Generated Solution

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 3 | Subjective | JEE Advanced|10 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|15 Videos
  • DIFFERENTIABILITY

    MOTION|Exercise Exercise - 2 (Level-I) Objective Problems | JEE Main|15 Videos
  • DETERMINANTS

    MOTION|Exercise EXERCISE-4 (LEVEL-II)|6 Videos
  • DIFFERENTIAL EQUATION

    MOTION|Exercise Exercise 4|29 Videos

Similar Questions

Explore conceptually related problems

If f(x)=2[x]+cos x, then f:R rarr R is: (where [] denotes greatest integer function)

If f(x)=[2x], where [.] denotes the greatest integer function,then

If f(x)=[tan^(2)x] then (where [ast] denotes the greatest integer function)

Let f(x) = (x[x])/(x^2+1) : (1, 3) rarr R then range of f(x) is (where [ . ] denotes greatest integer function)

f(x)=1+[cos x]x, in 0<=x<=(x)/(2) (where [.] denotes greatest integer function)

If f(x)=|x-1|([x]-[-x]), then find f'(1^(+))&f'(1^(-)) where [x] denotes greatest integer function

If domain of y=f(x) is [-4,3], then domain of g(x)=f(|x]|) is,where [.] denotes greatest integer function

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then