Home
Class 12
MATHS
If domain of f(x) is (-prop, 0) then dom...

If domain of `f(x)` is `(-prop, 0)` then domain of `f(6{x}^2- 5 {x} + 1)` is
(where {*} represetns fractional part function)

A

`underset(n inI)uuu[n + 1/3,n + 1/2]`

B

`(-oo,0)`

C

`underset(n in I)uuu[ n + 1/6n +1]`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(6\{x\}^2 - 5\{x\} + 1) \) given that the domain of \( f(x) \) is \( (-\infty, 0) \), we need to ensure that the expression \( 6\{x\}^2 - 5\{x\} + 1 \) falls within the domain of \( f(x) \). ### Step-by-Step Solution: 1. **Understanding the Fractional Part Function**: The fractional part function \( \{x\} \) is defined as \( \{x\} = x - \lfloor x \rfloor \), where \( \lfloor x \rfloor \) is the greatest integer less than or equal to \( x \). The output of \( \{x\} \) lies in the interval \( [0, 1) \). 2. **Setting Up the Inequality**: We want to find when \( 6\{x\}^2 - 5\{x\} + 1 < 0 \). This will give us the values of \( \{x\} \) for which the output falls within the domain of \( f \). 3. **Rearranging the Inequality**: Let's denote \( y = \{x\} \). We need to solve the inequality: \[ 6y^2 - 5y + 1 < 0 \] 4. **Finding the Roots**: To solve the quadratic inequality, we first find the roots of the equation \( 6y^2 - 5y + 1 = 0 \) using the quadratic formula: \[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{5 \pm \sqrt{(-5)^2 - 4 \cdot 6 \cdot 1}}{2 \cdot 6} \] \[ = \frac{5 \pm \sqrt{25 - 24}}{12} = \frac{5 \pm 1}{12} \] This gives us two roots: \[ y_1 = \frac{6}{12} = \frac{1}{2}, \quad y_2 = \frac{4}{12} = \frac{1}{3} \] 5. **Analyzing the Sign of the Quadratic**: The quadratic \( 6y^2 - 5y + 1 \) opens upwards (since the coefficient of \( y^2 \) is positive). The quadratic will be negative between its roots: \[ \frac{1}{3} < y < \frac{1}{2} \] 6. **Mapping Back to \( x \)**: Since \( y = \{x\} \), we have: \[ \frac{1}{3} < \{x\} < \frac{1}{2} \] This means that \( x \) can be expressed as \( n + \{x\} \) where \( n \) is an integer. Therefore, the possible values of \( x \) can be represented as: \[ n + \frac{1}{3} < x < n + \frac{1}{2} \] for any integer \( n \). 7. **Final Domain**: The overall domain of \( f(6\{x\}^2 - 5\{x\} + 1) \) is the union of all intervals of the form: \[ (n + \frac{1}{3}, n + \frac{1}{2}) \quad \text{for all integers } n \] ### Conclusion: Thus, the domain of \( f(6\{x\}^2 - 5\{x\} + 1) \) is: \[ \bigcup_{n \in \mathbb{Z}} \left( n + \frac{1}{3}, n + \frac{1}{2} \right) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 3|119 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

If domain of f(x) is (-oo,0], then domain of f(6{x}^(2)-5(x)+1) is (where {.} represents fractional part function)

Find the domain and range of f(f)=log{x}, where {} represents the fractional part function).

Domain of function f(x)=ln(x), where {} represents fractional part function.

Find the domain of f(x) = sqrt (|x|-{x}) (where {*} denots the fractional part of x).

The domain of f(x)=sqrt(2{x}^(2)-3{x}+1) where {.} denotes the fractional part in [-1,1]

The domain of function f(x)=ln(ln((x)/({x}))) is (where { ) denotes the fractional part function)

The domain of f(x)=log_(e)(1-{x}); (where {.} denotes fractional part of x ) is

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of function f(x)=ln(ln((x)/({x}))) is (where f ) denotes the fractional part function

The domain of f(x)=(1)/(sqrt(-x^(2)+{x})) (where {.} denotes fractional part of x) is

MOTION-FUNCTION-Exercise - 2 (Level-I)
  1. Find domain of the function f(x) = sqrt(-log((x+4)/2)(log2(2x-1)/(3...

    Text Solution

    |

  2. If domain of f(x) is (-prop, 0) then domain of f(6{x}^2- 5 {x} + 1) is...

    Text Solution

    |

  3. Domain of the function f(x)=log(2x)((sqrt(|tanx|+tanx))/(sqrt(2x)))*x ...

    Text Solution

    |

  4. Find the domain of the function, f(x)=log{log(abs(sinx)){x^(2)-8x+23...

    Text Solution

    |

  5. If [2 cos x ] + [sin x]=-3, then the range of the function, f (x)=sin...

    Text Solution

    |

  6. Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^...

    Text Solution

    |

  7. If f(x) = (sin^2x + 4sinx + 5)/(2 sin ^2x + 8 sin x + 8), then range o...

    Text Solution

    |

  8. The domain and range of f(x) = cos^(-1)sqrt(log([x])(|x|/(x))) where[....

    Text Solution

    |

  9. Which of the following pair of functions are identical ?

    Text Solution

    |

  10. The number of solution(s) integer function and ) of the equation [x] +...

    Text Solution

    |

  11. If A , B , C are three real numbers and p=[A+b+C] and q=[A]+[B]+[C]dot...

    Text Solution

    |

  12. Which of the following has range above y = 2

    Text Solution

    |

  13. Siny = Sinx has graph

    Text Solution

    |

  14. If f : [0,oo)to [0,oo) and f(x) =(x)/(1+x), then f is

    Text Solution

    |

  15. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  16. If f(x) = 2[x] + cosx, then f : R to R is (where [ * ] denotes great...

    Text Solution

    |

  17. If the real-valued function f(x) = px + sinx is a bijective function, ...

    Text Solution

    |

  18. Let S be the set of all triangles and R^+ be the set of positive real ...

    Text Solution

    |

  19. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  20. A function f(x)=(2x(sin x))/(2[(x+21 pi)/(pi)]-41)(1) Even function (...

    Text Solution

    |