Home
Class 12
MATHS
If f(x) = (sin^2x + 4sinx + 5)/(2 sin ^2...

If `f(x) = (sin^2x + 4sinx + 5)/(2 sin ^2x + 8 sin x + 8)`, then range of f(x) is

A

`(1/2,oo)`

B

`(5/9,1)`

C

`[ 5/9, 1]`

D

`[5/9,oo)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2 \sin^2 x + 8 \sin x + 8} \), we will follow these steps: ### Step 1: Rewrite the function We can rewrite the function by factoring out constants from the numerator and denominator: \[ f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2 \sin^2 x + 8 \sin x + 8} \] We can factor out \(2\) from the denominator: \[ f(x) = \frac{\sin^2 x + 4 \sin x + 5}{2(\sin^2 x + 4 \sin x + 4)} \] ### Step 2: Simplify the expression Next, we can simplify the expression: \[ f(x) = \frac{1}{2} \cdot \frac{\sin^2 x + 4 \sin x + 5}{\sin^2 x + 4 \sin x + 4} \] ### Step 3: Set \( y = \sin x \) Let \( y = \sin x \). Since \( \sin x \) varies from -1 to 1, we will analyze the function in terms of \( y \): \[ f(y) = \frac{1}{2} \cdot \frac{y^2 + 4y + 5}{y^2 + 4y + 4} \] ### Step 4: Analyze the function Now we need to analyze the function: \[ f(y) = \frac{1}{2} \cdot \frac{(y^2 + 4y + 4) + 1}{y^2 + 4y + 4} = \frac{1}{2} \left(1 + \frac{1}{y^2 + 4y + 4}\right) \] ### Step 5: Find the minimum and maximum values of the denominator The denominator \( y^2 + 4y + 4 \) can be rewritten as: \[ (y + 2)^2 \] This expression is always non-negative and reaches its minimum value of \( 0 \) when \( y = -2 \). However, since \( y = \sin x \), the valid range for \( y \) is from -1 to 1. Calculating the minimum and maximum values of \( (y + 2)^2 \) in the interval \( y \in [-1, 1] \): - At \( y = -1 \): \( (-1 + 2)^2 = 1 \) - At \( y = 1 \): \( (1 + 2)^2 = 9 \) Thus, \( (y + 2)^2 \) varies from \( 1 \) to \( 9 \). ### Step 6: Determine the range of \( f(y) \) Now we can find the range of \( f(y) \): - When \( (y + 2)^2 = 1 \) (minimum value): \[ f(y) = \frac{1}{2} \left(1 + 1\right) = 1 \] - When \( (y + 2)^2 = 9 \) (maximum value): \[ f(y) = \frac{1}{2} \left(1 + \frac{1}{9}\right) = \frac{1}{2} \left(\frac{10}{9}\right) = \frac{5}{9} \] ### Step 7: Conclusion Thus, the range of \( f(x) \) is: \[ \left[\frac{5}{9}, 1\right] \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 3|119 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin^(2)x+4sin x+5)/(2sin^(2)x+8sin x+8) then range of f(x) is

Define f: R to R by f(x) = (sin^(2)x + cos^(4)x)/(cos^(2)x + sin^(4)x) , then the range of f consists of exactly ………….. Element(s).

If f(x)= sin^(-1)x and g(x)=[sin(cosx)]+[cos(sinx)], then range of f(g(x)) is (where [*] denotes greatest integer function)

Find the range of f(x) =sin^2x-3sinx+2 .

If f(x) =(cos^2x +sin^4x)/(sin^2x +cos^4x) for x in R then f(2020) =

Find the range of f(x)=sin^(2)x-sin x+1

MOTION-FUNCTION-Exercise - 2 (Level-I)
  1. If [2 cos x ] + [sin x]=-3, then the range of the function, f (x)=sin...

    Text Solution

    |

  2. Let f be a real valued function defined by f(x)=(e^x-e^(-|x|))/(e^x+e^...

    Text Solution

    |

  3. If f(x) = (sin^2x + 4sinx + 5)/(2 sin ^2x + 8 sin x + 8), then range o...

    Text Solution

    |

  4. The domain and range of f(x) = cos^(-1)sqrt(log([x])(|x|/(x))) where[....

    Text Solution

    |

  5. Which of the following pair of functions are identical ?

    Text Solution

    |

  6. The number of solution(s) integer function and ) of the equation [x] +...

    Text Solution

    |

  7. If A , B , C are three real numbers and p=[A+b+C] and q=[A]+[B]+[C]dot...

    Text Solution

    |

  8. Which of the following has range above y = 2

    Text Solution

    |

  9. Siny = Sinx has graph

    Text Solution

    |

  10. If f : [0,oo)to [0,oo) and f(x) =(x)/(1+x), then f is

    Text Solution

    |

  11. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  12. If f(x) = 2[x] + cosx, then f : R to R is (where [ * ] denotes great...

    Text Solution

    |

  13. If the real-valued function f(x) = px + sinx is a bijective function, ...

    Text Solution

    |

  14. Let S be the set of all triangles and R^+ be the set of positive real ...

    Text Solution

    |

  15. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  16. A function f(x)=(2x(sin x))/(2[(x+21 pi)/(pi)]-41)(1) Even function (...

    Text Solution

    |

  17. Let f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex le 0):}. If f(x) is an even ...

    Text Solution

    |

  18. If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmet...

    Text Solution

    |

  19. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  20. The fundamental period of function f(x) = [x] + [x + (1)/(3)] + [x + (...

    Text Solution

    |