Home
Class 12
MATHS
Let f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex...

Let `f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex le 0):}`. If f(x) is an even function in R, then the defination of `f(x) " in " (0, +oo)` is :

A

`{:f(x)={(4x, :, 0 ltx le 1),(4, :, x gt1):}`

B

`{:f(x)={(4x, :, 0lt x le 1),(4, :, x gt1):}`

C

`{:f(x)={(4, :, 0lt x le 1),(4, :, x gt1):}`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to determine the definition of the function \( f(x) \) in the interval \( (0, +\infty) \) given that \( f(x) \) is an even function. ### Step-by-Step Solution: 1. **Understanding Even Functions**: An even function satisfies the property \( f(-x) = f(x) \) for all \( x \) in its domain. This means that the function is symmetric about the y-axis. 2. **Analyzing the Given Function**: The function is defined as: \[ f(x) = \begin{cases} 4 & \text{if } x < -1 \\ -4x & \text{if } -1 \leq x \leq 0 \end{cases} \] 3. **Finding \( f(-x) \)**: We need to find \( f(-x) \) for \( x \) in the interval \( (0, +\infty) \): - For \( x > 0 \), \( -x < 0 \). Thus, we use the second case of the function: \[ f(-x) = -4(-x) = 4x \quad \text{for } -1 \leq -x \leq 0 \text{ (which is true for } 0 < x \leq 1\text{)} \] 4. **Finding \( f(x) \) for \( x \) in \( (0, +\infty) \)**: - For \( x \in (0, 1) \), since \( f(-x) = 4x \), we need \( f(x) \) to be equal to \( f(-x) \) to maintain the even function property. Therefore, we define: \[ f(x) = 4x \quad \text{for } 0 < x < 1 \] - For \( x \geq 1 \), we observe that \( f(-x) \) should also equal \( f(x) \). Since \( f(-x) = 4x \) and we need \( f(x) \) to be constant (as per the first case when \( x < -1 \)): \[ f(x) = 4 \quad \text{for } x \geq 1 \] 5. **Final Definition of \( f(x) \)**: Combining all parts, we can define \( f(x) \) for \( x \in (0, +\infty) \) as: \[ f(x) = \begin{cases} 4x & \text{if } 0 < x < 1 \\ 4 & \text{if } x \geq 1 \end{cases} \] ### Summary: The definition of \( f(x) \) in the interval \( (0, +\infty) \) is: \[ f(x) = \begin{cases} 4x & \text{if } 0 < x < 1 \\ 4 & \text{if } x \geq 1 \end{cases} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 3|119 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 1 ( JEE Main)|48 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

f(x)={(4, xlt-1) ,(-4x,-1lt=xlt=0):} If f(x) is an even function in R then the definition of f(x) in (0,oo) is: (A) f(x)={(4x, 0ltxle1),(4, xgt1):} (B) f(x)={(4x, 0ltxle1),(-4, xgt1):} (C) f(x)={(4, 0ltxle1),(4x, xgt1):} (D) f(x)={(4, xlt-1),(-4x, -1lexle0):}

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

Let f (x)= {{:(a-3x,,, -2 le x lt 0),( 4x+-3,,, 0 le x lt 1):},if f (x) has smallest valueat x=0, then range of a, is

Let f be an even function defined on R. Suppose f is defined on [0,4] as follows: f(x) = {{:(3x, if, 0 le x lt 1),(4-x, if, 1 le x le 4):} and f satisfies the condition. f(x-2) = f{x + [(6x^(2) + 272)/(x^(2) + 2)]) AA x in R Where [x] = greatest integer le x . Then f(3271) +f(-2052) + f(806) =..............

Let f(x) = {{:(-1,-2 le x lt 0),(x^2-1,0 le x le 2):} and g(x)=|f(x)|+f(|x|) . Then , in the interval (-2,2),g is

If f(x) = [{:( x^(2) + sin x , 0 le x lt 1) , (x + e^(-x) , x ge 1):} then extend the definition of f(x) for x in (-oo , 0) such that f(x) becomes (a) An even function (b) An odd function

Let f (x) be defined as f (x) ={{:(|x|, 0 le x lt1),(|x-1|+|x-2|, 1 le x lt2),(|x-3|, 2 le x lt 3):} The range of function g (x)= sin (7 (f (x)) is :

Let f (x)= {{:(2-x"," , -3 le x le 0),( x-2"," , 0 lt x lt 4):} Then f ^(-1) (x) is discontinous at x=

If f : [2,oo) to R be the function defined by f(x)=x^(2)-4x+5, then the range of f is

Let f(x) = {(x "sin" (pi)/(x)",",0 lt x le 1),(0,x =0):} . Then f'(x) = 0 for

MOTION-FUNCTION-Exercise - 2 (Level-I)
  1. If f : [0,oo)to [0,oo) and f(x) =(x)/(1+x), then f is

    Text Solution

    |

  2. Let f: (e, oo) -> R be defined by f(x) =ln(ln(In x)), then

    Text Solution

    |

  3. If f(x) = 2[x] + cosx, then f : R to R is (where [ * ] denotes great...

    Text Solution

    |

  4. If the real-valued function f(x) = px + sinx is a bijective function, ...

    Text Solution

    |

  5. Let S be the set of all triangles and R^+ be the set of positive real ...

    Text Solution

    |

  6. If g:[-2,2]vecR , where f(x)=x^3+tanx+[(x^2+1)/P] is an odd function, ...

    Text Solution

    |

  7. A function f(x)=(2x(sin x))/(2[(x+21 pi)/(pi)]-41)(1) Even function (...

    Text Solution

    |

  8. Let f(x)={:{(4, :, x lt-1),(-4x,:,-1 lex le 0):}. If f(x) is an even ...

    Text Solution

    |

  9. If the graph of the function f(x)=(a^(x)-1)/(x^(n)(a^(x)+1)) is symmet...

    Text Solution

    |

  10. If f(x)=sin(sqrt([a])x) (where [.] denotes the greatest integer functi...

    Text Solution

    |

  11. The fundamental period of function f(x) = [x] + [x + (1)/(3)] + [x + (...

    Text Solution

    |

  12. Let f: R to R be a periodic function such that f(T+x)=1" " where T...

    Text Solution

    |

  13. Fundamental period of the function f(x) = cos (sinx) + cos(cosx) is :

    Text Solution

    |

  14. If f(x+1)+f(x-1)=2f(x)a n df(0),=0, then f(n),n in N , is nf(1) (b) ...

    Text Solution

    |

  15. If 2f(xy) =(f(x))^(y) + (f(y))^(x) for all x, y in R and f(1) =3, then...

    Text Solution

    |

  16. No. of solution ge 7 for

    Text Solution

    |

  17. If the function f:[1,oo)to[1,oo) is defined by f(x)=2^(x(x-1)) then f^...

    Text Solution

    |

  18. Given below is graph of y = f(x) then

    Text Solution

    |

  19. Let f(x) = {{:(x + 1 , :, x £ 0) , (x , : , x gt 0):} and h (x) = |f(...

    Text Solution

    |

  20. Let {:f(x)= {(abs(x+1):,xlt1),(1-x:,x le 1):} and {:f(x)= {(x-2:, xlt0...

    Text Solution

    |