Home
Class 12
MATHS
If f(x) = sqrt(x ^(2) - 5x + 4) & g(x) =...

If f(x) = `sqrt(x ^(2) - 5x + 4)` & g(x) = x + 3 , then find the domain of `(f)/(g) (x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( \frac{f(x)}{g(x)} \) where \( f(x) = \sqrt{x^2 - 5x + 4} \) and \( g(x) = x + 3 \), we need to ensure that both the numerator and the denominator are defined and that the denominator is not equal to zero. ### Step 1: Determine the conditions for \( f(x) \) The function \( f(x) \) involves a square root, so we need the expression inside the square root to be non-negative: \[ x^2 - 5x + 4 \geq 0 \] ### Step 2: Factor the quadratic expression To solve the inequality, we can factor the quadratic: \[ x^2 - 5x + 4 = (x - 1)(x - 4) \] ### Step 3: Find the critical points Setting the factored expression equal to zero gives us the critical points: \[ (x - 1)(x - 4) = 0 \implies x = 1 \quad \text{and} \quad x = 4 \] ### Step 4: Test intervals around the critical points We will test the sign of \( (x - 1)(x - 4) \) in the intervals determined by the critical points: \( (-\infty, 1) \), \( (1, 4) \), and \( (4, \infty) \). 1. **Interval \( (-\infty, 1) \)**: Choose \( x = 0 \) \[ (0 - 1)(0 - 4) = (-1)(-4) = 4 \quad (\text{positive}) \] 2. **Interval \( (1, 4) \)**: Choose \( x = 2 \) \[ (2 - 1)(2 - 4) = (1)(-2) = -2 \quad (\text{negative}) \] 3. **Interval \( (4, \infty) \)**: Choose \( x = 5 \) \[ (5 - 1)(5 - 4) = (4)(1) = 4 \quad (\text{positive}) \] ### Step 5: Write the solution for \( f(x) \) From our tests, \( (x - 1)(x - 4) \geq 0 \) is satisfied in the intervals: \[ (-\infty, 1] \cup [4, \infty) \] ### Step 6: Determine the conditions for \( g(x) \) Next, we need to ensure that the denominator \( g(x) = x + 3 \) is not equal to zero: \[ x + 3 \neq 0 \implies x \neq -3 \] ### Step 7: Combine the conditions Now we need to combine the intervals from \( f(x) \) and the restriction from \( g(x) \): 1. The intervals from \( f(x) \) are \( (-\infty, 1] \cup [4, \infty) \). 2. We exclude \( x = -3 \) from the domain. ### Step 8: Final domain The domain of \( \frac{f(x)}{g(x)} \) is: \[ (-\infty, -3) \cup (-3, 1] \cup [4, \infty) \] ### Summary of the Domain Thus, the final domain of \( \frac{f(x)}{g(x)} \) is: \[ (-\infty, -3) \cup (-3, 1] \cup [4, \infty) \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain of f(x)=sqrt(x-3)

Find the domain of f(x)=sqrt(x^2-4x+3)

If f(x) = sqrt(2-x) and g(x) = sqrt(1-2x) , then the domain of fog (x) is

Find the domain of f(x)=sqrt(5(|x|-x^2-6)

If f(x)=(x+2)/(x+1) and g(x)=(x-2)/(x), then find the domain of fog(x)

If f(x)=sqrt(x)" and "g(x)=2x-3 , then domain of (fog) (x) is

If f(x)=sqrt(|3^(x)-3^(1)|-2) and g(x)=tan pi x, then domain of fog(x) , is

Let f be a function with domain [-3, 5] and let g (x) = | 3x + 4 | , Then the domain of (fog) (x) is

MOTION-FUNCTION-Exercise - 3
  1. f(x)=1/[x]+log(1-{x}) (x^2-3x-10)+1 /sqrt(2-|x|) + 1/(sec(sinx)) find ...

    Text Solution

    |

  2. Find the domain of definitions of the functions (Read the symbols [...

    Text Solution

    |

  3. If f(x) = sqrt(x ^(2) - 5x + 4) & g(x) = x + 3 , then find the domain ...

    Text Solution

    |

  4. Find the domain and range of the function f(x) = |x-3|

    Text Solution

    |

  5. Find the domain and range of the function f(x)=(1)/sqrt(x-5)

    Text Solution

    |

  6. Find the domain and range of the function f(x) = sqrt(x-1)

    Text Solution

    |

  7. Find the domain and range of the function f(x) = sqrt(16 - x^(2))

    Text Solution

    |

  8. Find the domain and range of the function f(x) = (1)/(2- cos 3x)

    Text Solution

    |

  9. Find the range of the function f(x)=3 sin (sqrt((pi^(2))/(16)-x^(2))).

    Text Solution

    |

  10. if:f(x)=(sinx)/(sqrt(1+tan^2x))-(cosx)/(sqrt(1+cot^2x)), then find the...

    Text Solution

    |

  11. The range of f(x)=sin^2x+cos^4x

    Text Solution

    |

  12. Range of function f(x)=3|sinx|-4|cosx|

    Text Solution

    |

  13. Find the domain and range of the function f(x) = x/(2 - 3x)

    Text Solution

    |

  14. Find the domain and range of the function f(x) = (x)/(1 + x^(2))

    Text Solution

    |

  15. Find the range of the following functions: (where {.} and [.] represe...

    Text Solution

    |

  16. Find the domain and range of the function f(x) = sqrt(2 - x) + sqrt(...

    Text Solution

    |

  17. Find the domain and range of the function f(x) = (sqrt(x + 4) - 3)/(...

    Text Solution

    |

  18. Find the range of the function g(x)=(x^2+2x+3)/x.

    Text Solution

    |

  19. Find the Range of function f(x) = (x- [x])/(1 - [x] + x) , [.] = G.I...

    Text Solution

    |

  20. Find the Range of function f(x) = log(e) (3x^(2) - 4 x + 5) is :

    Text Solution

    |