Home
Class 12
MATHS
Find the domain and range of the functio...

Find the domain and range of the function
`f(x) = sqrt(2 - x) + sqrt(1 + x)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain and range of the function \( f(x) = \sqrt{2 - x} + \sqrt{1 + x} \), we will follow these steps: ### Step 1: Determine the conditions for the square roots The function contains two square root terms: \( \sqrt{2 - x} \) and \( \sqrt{1 + x} \). For these square roots to be defined, the expressions inside them must be non-negative. 1. For \( \sqrt{2 - x} \): \[ 2 - x \geq 0 \implies x \leq 2 \] 2. For \( \sqrt{1 + x} \): \[ 1 + x \geq 0 \implies x \geq -1 \] ### Step 2: Combine the conditions From the inequalities derived, we have: - \( x \leq 2 \) - \( x \geq -1 \) Combining these gives us the domain: \[ -1 \leq x \leq 2 \] Thus, the domain of \( f(x) \) is: \[ \text{Domain} = [-1, 2] \] ### Step 3: Find the range of the function Next, we will find the range of the function by evaluating it at the endpoints of the domain and checking for any critical points. 1. Evaluate \( f(-1) \): \[ f(-1) = \sqrt{2 - (-1)} + \sqrt{1 + (-1)} = \sqrt{3} + \sqrt{0} = \sqrt{3} \] 2. Evaluate \( f(2) \): \[ f(2) = \sqrt{2 - 2} + \sqrt{1 + 2} = \sqrt{0} + \sqrt{3} = \sqrt{3} \] 3. Find the critical points by differentiating \( f(x) \): \[ f'(x) = \frac{-1}{2\sqrt{2 - x}} + \frac{1}{2\sqrt{1 + x}} \] Set \( f'(x) = 0 \): \[ \frac{-1}{2\sqrt{2 - x}} + \frac{1}{2\sqrt{1 + x}} = 0 \implies \frac{1}{\sqrt{1 + x}} = \frac{1}{\sqrt{2 - x}} \] Squaring both sides: \[ 1 + x = 2 - x \implies 2x = 1 \implies x = \frac{1}{2} \] 4. Evaluate \( f\left(\frac{1}{2}\right) \): \[ f\left(\frac{1}{2}\right) = \sqrt{2 - \frac{1}{2}} + \sqrt{1 + \frac{1}{2}} = \sqrt{\frac{3}{2}} + \sqrt{\frac{3}{2}} = 2\sqrt{\frac{3}{2}} = \sqrt{6} \] ### Step 4: Determine the range From our evaluations: - Minimum value of \( f(x) \) is \( \sqrt{3} \) (at \( x = -1 \) and \( x = 2 \)). - Maximum value of \( f(x) \) is \( \sqrt{6} \) (at \( x = \frac{1}{2} \)). Thus, the range of \( f(x) \) is: \[ \text{Range} = [\sqrt{3}, \sqrt{6}] \] ### Final Answer - **Domain**: \( [-1, 2] \) - **Range**: \( [\sqrt{3}, \sqrt{6}] \)
Promotional Banner

Topper's Solved these Questions

  • FUNCTION

    MOTION|Exercise Exercise - 4 Level-I|10 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 4 | Level-II|7 Videos
  • FUNCTION

    MOTION|Exercise Exercise - 2 (Level-II)|6 Videos
  • ELLIPSE

    MOTION|Exercise Exercise - 4 | Level-I Previous Year | JEE Main|20 Videos
  • HYPERBOLA

    MOTION|Exercise EXERCISE-4 (Level-II)|17 Videos

Similar Questions

Explore conceptually related problems

Find the domain and range of the function f(x) = sqrt(x-1)

Find the domain and range of the function f(x) = sqrt(16 - x^(2))

Find the domain and range of the function f(x)=sqrt(x-5) .

Find the domain and range of the function f(x)=(1)/sqrt(x-5)

Find the domain and range of real function , f(x)=sqrt(x^2 +4)

The range of the function f(x) = sqrt(2-x)+sqrt( 1+x)

Find the domain and range of the real function f(x) = sqrt(9 -x^(2))

Find the domain and range of the real function f(x) = sqrt(4-x^(2))

Find the domain and range of the function f(x) = (x)/(1 + x^(2))

MOTION-FUNCTION-Exercise - 3
  1. Find the domain and range of the function f(x) = (x)/(1 + x^(2))

    Text Solution

    |

  2. Find the range of the following functions: (where {.} and [.] represe...

    Text Solution

    |

  3. Find the domain and range of the function f(x) = sqrt(2 - x) + sqrt(...

    Text Solution

    |

  4. Find the domain and range of the function f(x) = (sqrt(x + 4) - 3)/(...

    Text Solution

    |

  5. Find the range of the function g(x)=(x^2+2x+3)/x.

    Text Solution

    |

  6. Find the Range of function f(x) = (x- [x])/(1 - [x] + x) , [.] = G.I...

    Text Solution

    |

  7. Find the Range of function f(x) = log(e) (3x^(2) - 4 x + 5) is :

    Text Solution

    |

  8. Find the Range of function f(x) = [|sin x| + |cosx |] , where [.] de...

    Text Solution

    |

  9. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  10. Check whether pairs of function are identical or not ? f(x) = sec (...

    Text Solution

    |

  11. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  12. Check whether following pairs of function are identical or not? f(x)...

    Text Solution

    |

  13. Mark the graph of the function f(x) = ||x| - 3|

    Text Solution

    |

  14. Draw the graph of the function: f(x)="sin"|x|

    Text Solution

    |

  15. Mark the graph of the function f(x) = [|x|]

    Text Solution

    |

  16. Mark the graph of the function f(x) = |{x}|

    Text Solution

    |

  17. Mark the graph of the function f(x) = 3 sin (X - (pi)/(3))

    Text Solution

    |

  18. Mark the graph of the function f (x) = (x^(8))/(x)

    Text Solution

    |

  19. Mark the graph of the function f(x) = x + sin x

    Text Solution

    |

  20. Mark the graph of the function f (x) = 3e^(x + 5) - 7

    Text Solution

    |